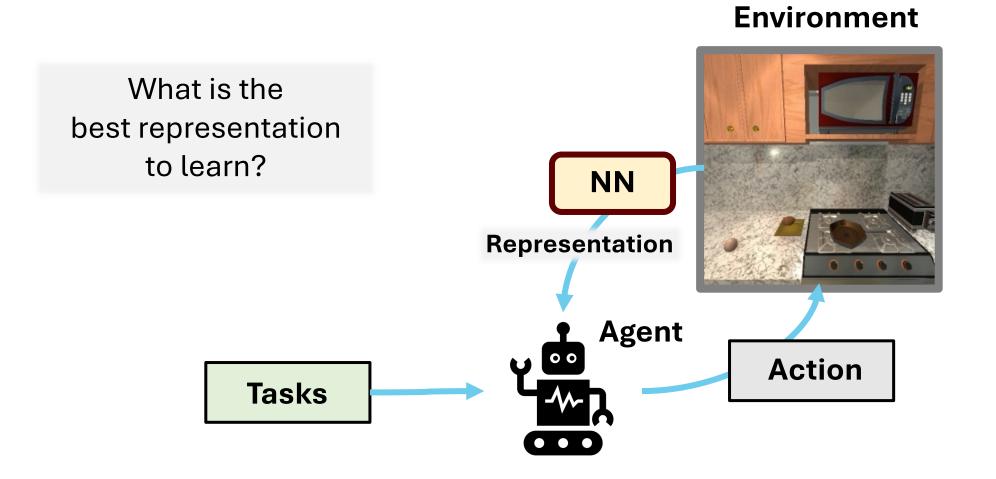
BISCUIT: Causal Representation Learning from Binary Interactions

Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves

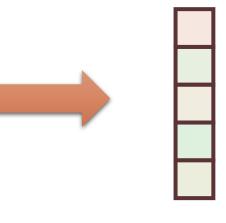
July 18, 2023

Problem Setup



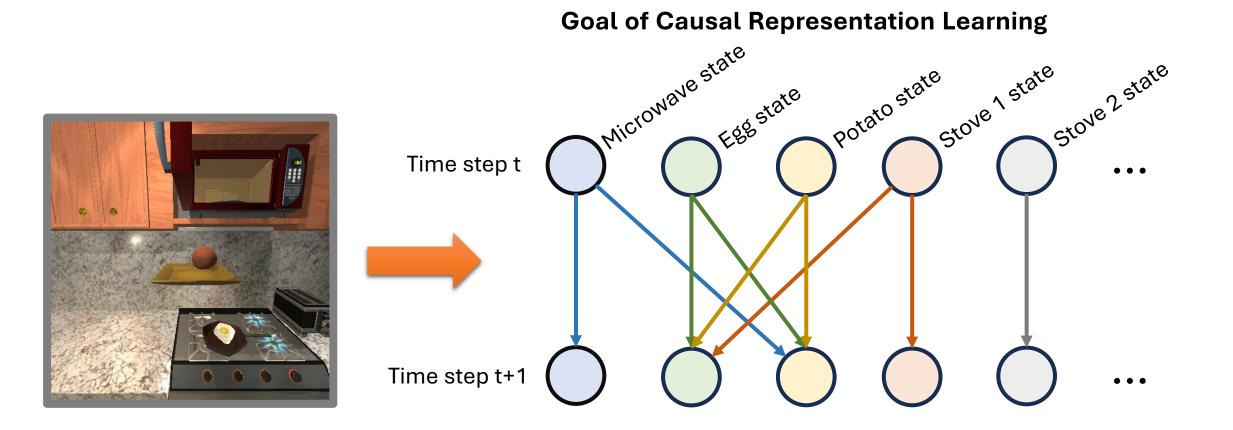
Causal Representation Learning

Dense Representation

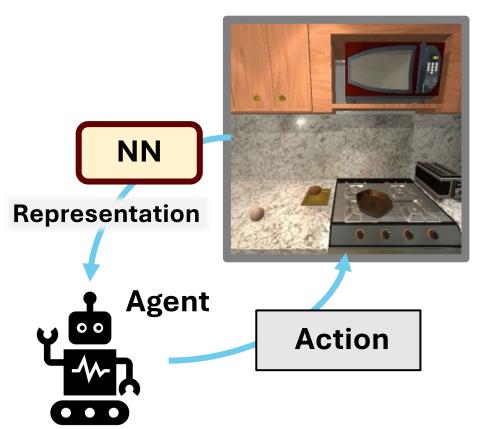


Interpretable? Generalizable? Reasoning-oriented?

Causal Representation Learning



Causal Representation Learning



Environment

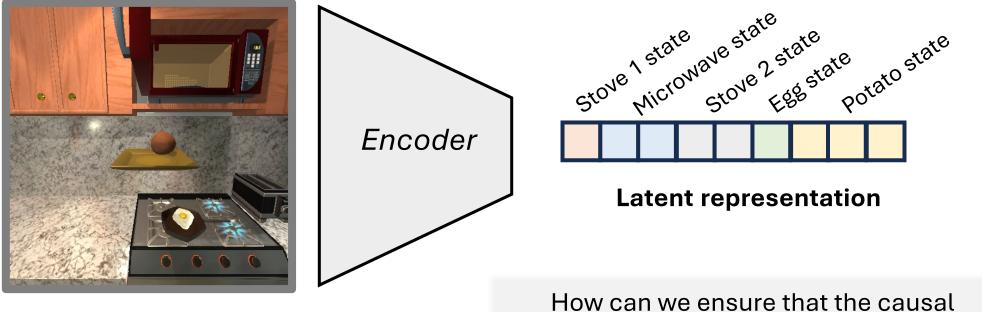
Representation Learning Tasks

What are the causal variables of the environment?

How do they interact with each other?

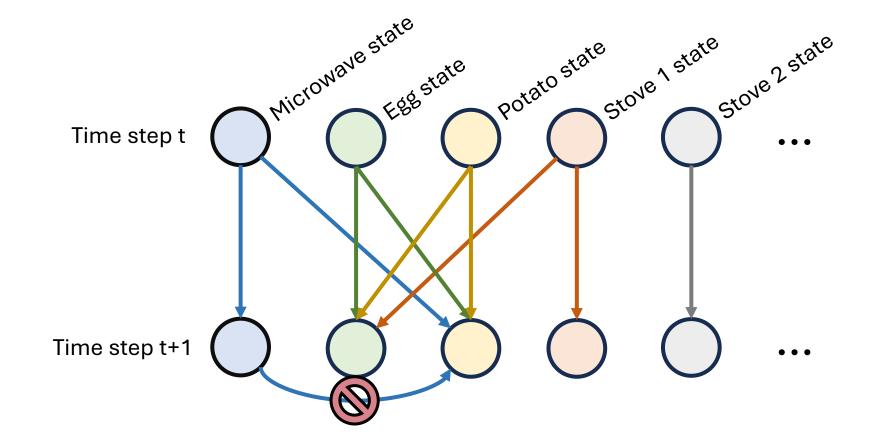
How can the agent intervene on causal variables?

Challenges in Causal Representation Learning



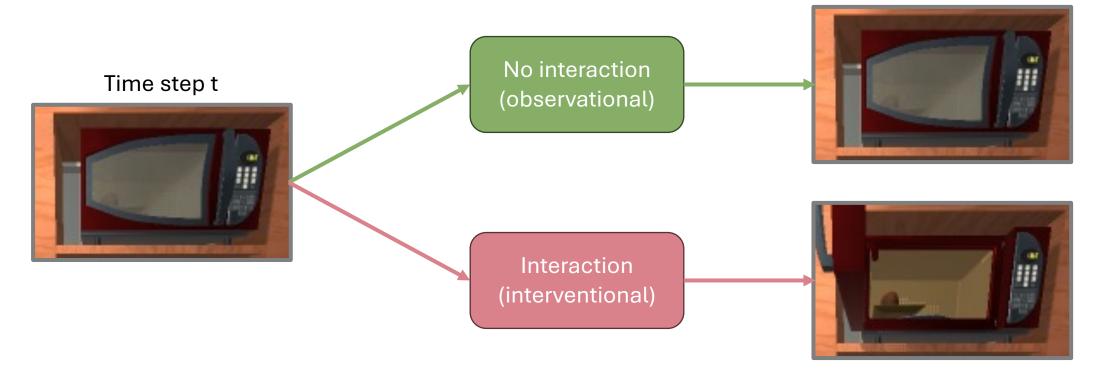
variables are identified in the latent space?

Assumption 1: Causal Relations can be resolved over time

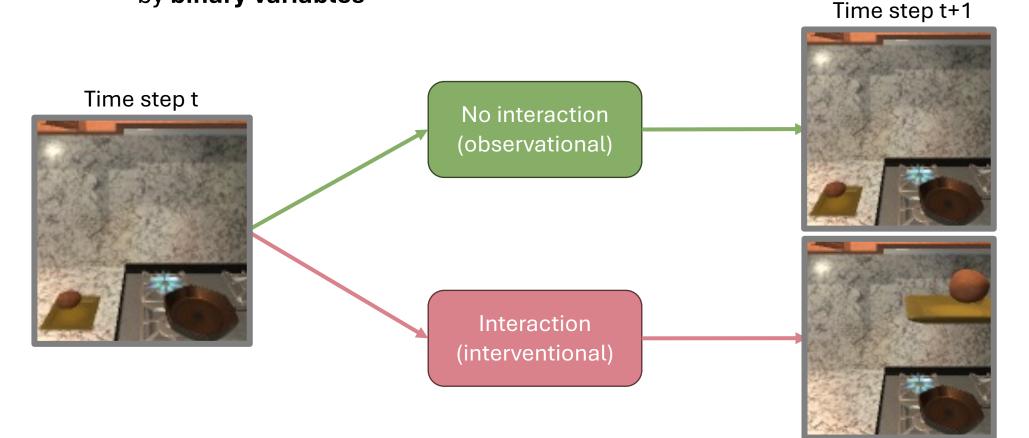


Assumption 2: Interactions between the agent and causal variables can be described by **binary variables**

Time step t+1



Assumption 2: Interactions between agent and causal variables can be described by **binary variables**



9

BISCUIT: Theoretical Results

Assumption 1: Causal Relations can be resolved over time

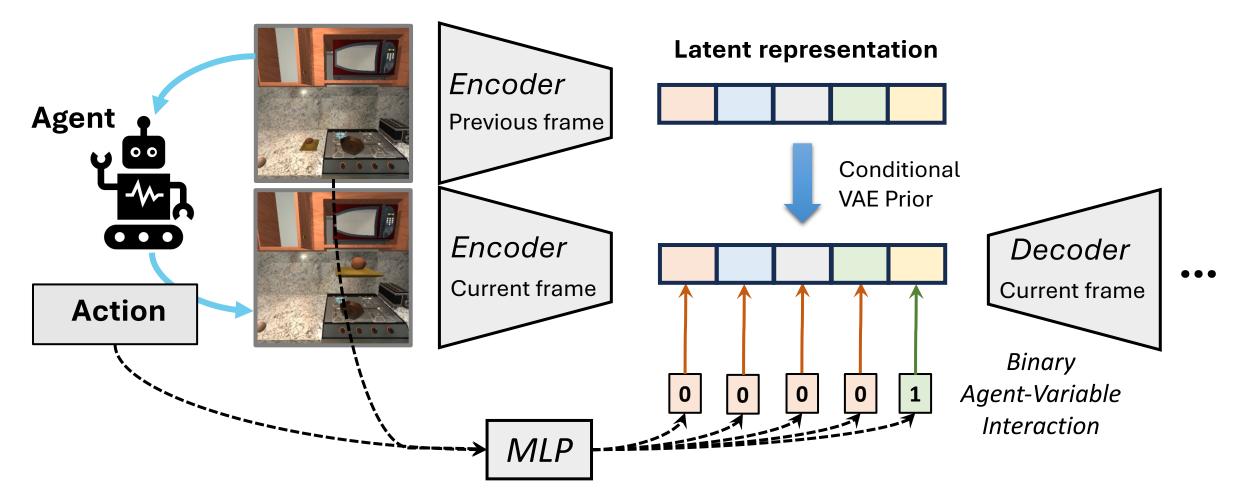
Assumption 2: Interactions between agent and causal variables can be described by **binary variables**

Assumption 3: All causal variables have different interaction patterns

Assumption 4: The causal mechanisms need to sufficiently vary on *interventions* or *over time* (allows for additive Gaussian noise models)

BISCUIT Theoretical Result

Under these assumptions, causal variables can be identified from videos with low-level actions.

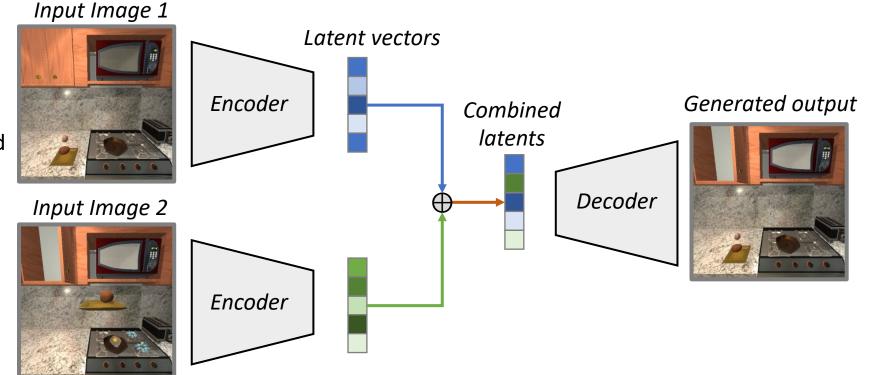


Experiments – iTHOR

- Kitchen environment with 10 causal variables
 - Cabinet (open/closed)
 - Microwave (open/closed)
 - Microwave (on/off)
 - Egg (position, broken, cooked)
 - Potato (position)
 - 4x Stove burner (on/off, burning)
 - Toaster (on/off)
- Close-to random policy
- Actions represented as x-y coordinate of a randomly sampled object pixel

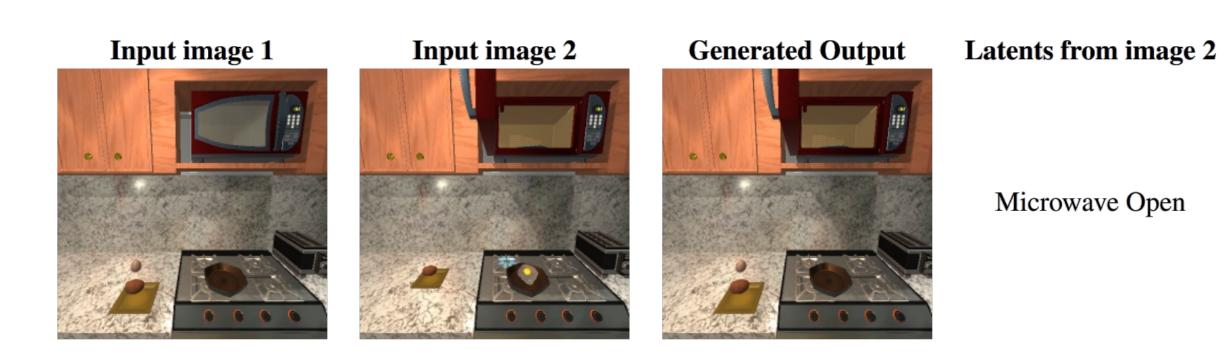
iTHOR – Simulate Latent Interventions

- BISCUIT accurately identifies causal variables
- Validated by performing interventions in latent space



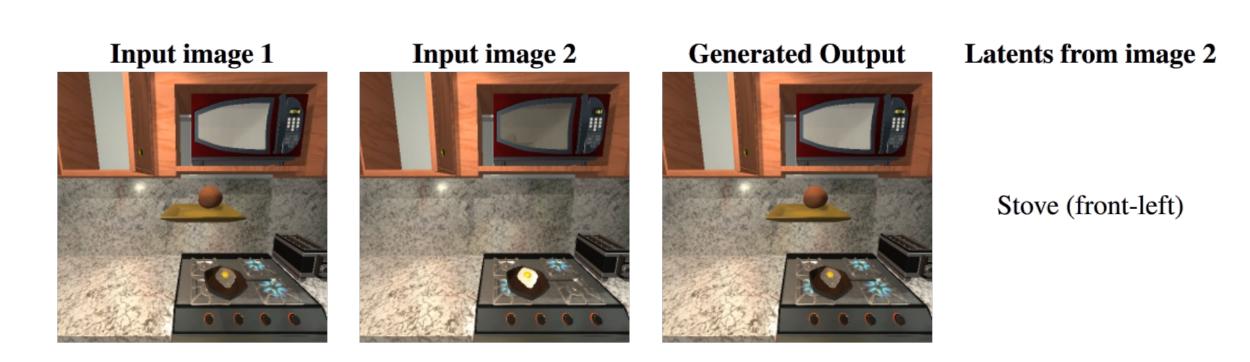
Goal Open Cabinet Turn on Microwave Keep other variables fixed

iTHOR – Simulate Latent Interventions



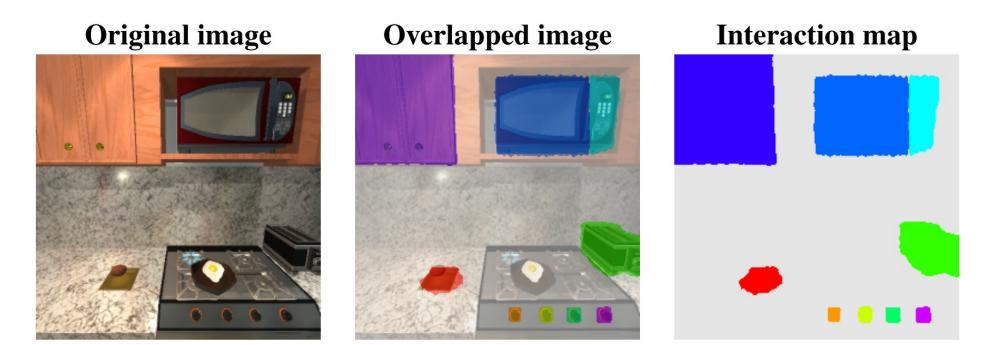
14

iTHOR – Simulate Latent Interventions



iTHOR – Interaction Maps

- Visualize learned interaction variables by the x-y locations they are active
- Each causal variable shown in different color

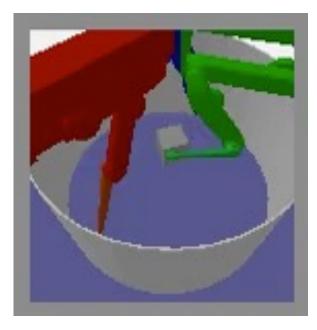


CausalWorld – Robotic Trifinger

- Tri-finger robot interacting with its environment and objects
 - Causal variables include object position, frictions, colors, etc.
- Action: 9-dimensional motor angles (3 per finger)
- BISCUIT identifies causal variables accurately

Accuracy of learned causal variables (higher is better / lower is better)

Models	CausalWorld				
iVAE (Khemakhem et al., 2020a)	0.28 / 0.00				
LEAP (Yao et al., 2022b)	0.30 / 0.00				
DMS (Lachapelle et al., 2022b)	0.32 / 0.00				
BISCUIT-NF (Ours)	0.97 / 0.01				



CausalWorld – Learned Interactions

les	F1 scores for learned interaction variables									_ 1 0
Variables	Finger 1 - Color	45.1	7.1	8.9	5.2	4.8	3.5	16.6		-1.0
Var	Finger 2 - Color	6.2	47.2	8.6	4.8	5.1	3.1	24.7		-0.8
Learned Interaction	Finger 3 - Color	8.5	6.6	50.1	3.5	3.6	3.9	20.2		-0.6
	Floor Friction	4.3	3.9	4.8	94.8	3.4	3.9	4.1		0.0
	Stage Friction	4.4	5.4	3.6	4.5	96.8	4.8	3.1		-0.4
	Cube Friction	4.8	3.5	3.2	5.8	5.9	93.2	5.4		-0.2
	Cube State	18.0	16.0	21.8	4.3	3.4	4.5	72.1		0.0
		Finger 1 - Color	Finger 2 - Color	Finger 3 - Color	Floor Friction	Stage Friction	Cube Friction	Cube State	-	-0.0

Ground Truth Interaction Variables

Conclusion

- BISCUIT identifies causal variables from interactive environments
- Key assumption: binary interaction variables describe agent-causal variable interactions
- Applicable to a variety of robotic and embodied AI environments
- Ability to 'imagine' by performing latent interventions
- Identifies actions to perform interventions

Project website and demo: phippe.github.io/BISCUIT/