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🍪

We identify 
causal variables 
from interactions,
e.g. in Embodied AI.

Paper and Demo

What is BISCUIT?

• BISCUIT learns causal representations from videos of 
interactive systems
• Example: identify the causal variables (e.g. microwave 

state, plate position, etc.) of the kitchen environment

• Key assumption: interactions between agent and a causal 
variable can be described by a binary interaction variable
• Interventional (e.g. open microwave) vs observational

BISCUIT provably identifies causal variables
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Figure 2: A representation of our assumptions. Observed variables are shown in gray (X⌧ and R⌧ ) and latent variables in
white. Optional causal edges are shown as dashed lines. A latent causal variable Ct

i has as parents a subset of the causal factors
at the previous time step Ct�1

= {Ct�1
1 , . . . , Ct�1

K }, and its latent binary interaction variable Iti . The interaction variables
are determined by an observed regime variable Rt and potentially by the variables from the previous time step Ct�1 (e.g., in
a collision). The regime variable can be a dynamical process over time as well, for example, by depending on the previous
time step. The observation X⌧ is a high-dimensional entangled representation of all causal variables C⌧ at time step ⌧ .

In this setup, we prove that causal variables are identifi-
able if the agent interacts with each causal variable in a
distinct pattern, i.e., does not always interact with any two
causal variables at the same time. We show that for K vari-
ables, we can in many cases fulfill this by having as few as
blog2 Kc+2 actions with sufficiently diverse effects, allow-
ing identifiability even for a limited number of actions. The
binary nature of the interactions permits the identification
of a wider class of causal models than previous work in a
similar setup, including the common, challenging additive
Gaussian noise model (Hyvärinen et al., 1999).

Based on these theoretical results, we propose BISCUIT
(Binary Interactions for Causal Identifiability). BISCUIT is
a variational autoencoder (Kingma et al., 2014) which learns
the causal variables and the agent’s binary interactions with
them in an unsupervised manner (see Figure 1). In experi-
ments on robotic-inspired datasets, BISCUIT identifies the
causal variables and outperforms previous methods. Fur-
thermore, we apply BISCUIT to the realistic 3D embodied
AI environment iTHOR (Kolve et al., 2017), and show that
BISCUIT is able to generate realistic renderings of unseen
causal states in a controlled manner. This highlights the po-
tential of causal representation learning in the challenging
task of embodied AI. In summary, our contributions are:

• We show that under mild assumptions, binary inter-
actions with unknown targets identify the causal vari-
ables from high-dimensional observations over time.

• We propose BISCUIT, a causal representation learning
framework that learns the causal variables and their
binary interactions simultaneously.

• We empirically show that BISCUIT identifies both the
causal variables and the interaction targets on three
robotic-inspired causal representation learning bench-
marks, and allows for controllable generations.

2 PRELIMINARIES

In this paper, we consider a causal model M as visualized
in Figure 2. The model M consists of K latent causal vari-
ables C1, ..., CK which interact with each other over time,
like in a dynamic Bayesian Network (DBN) (Dean et al.,
1989; Murphy, 2002). In other words, at each time step t, we
instantiate the causal variables as Ct

= {Ct
1, ..., C

t
K} 2 C,

where C ✓ RK is the domain. In terms of the causal graph,
each variable Ct

i may be caused by a subset of variables
in the previous time step {Ct�1

1 , ..., Ct�1
K }. For simplicity,

we restrict the temporal causal graph to only model depen-
dencies on the previous time step. Yet, as we show in Ap-
pendix B.3, our results can be trivially extended to longer
dependencies, e.g., (Ct�2, Ct�1

) ! Ct, since Ct�1 is only
used for ensuring conditional independence. As in DBNs,
we consider the graph structure to be time-invariant.

Besides the intra-variable dynamics, we assume that the
causal system is affected by a regime variable Rt with arbi-
trary domain R, which can be continuous or discrete of ar-
bitrary dimensionality. This regime variable can model any
known external causes on the system, which, for instance,
could be a robotic arm interacting with an environment. For
the causal graph, we assume that the effect of the regime
variable Rt on a causal variable Ct

i can be described by
a latent binary interaction variable Iti 2 {0, 1}. This can
be interpreted as each causal variable having two mecha-
nisms/distributions, e.g., an observational and an interven-
tional mechanism, which has similarly been assumed in pre-
vious work (Brehmer et al., 2022; Lippe et al., 2022b, 2023).
Thereby, the role of the interaction variable Iti is to select the
mechanism, i.e., observational or interventional, at time step
t. For example, a collision between an agent and an object is
an interaction that switches the dynamics of the object from

Causal graph:

• Assumption 1: each causal variable has a distinct interaction pattern
• Assumption 2: mechanisms sufficiently vary on intervention or over time
• Allows for additive Gaussian noise models if mean changes over time

How does BISCUIT work?

• Temporal VAE with causal vars in latent space and MLPs learning interaction vars
• Alternative setup: normalizing flow applied on autoencoder representation
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• In iTHOR, an action is a random x-y position of object interacted with
• Visualizing learned interaction variables for each causal variable segments objects

• Latent interventions by (1) encoding two images, (2) replacing latents of first image 
by latents of second image for respective causal variables, (3) decoding new latents

• Achieves novel combinations of causal vars, e.g. uncooked egg on burning stove

• Evaluating accuracy of identifying causal variables from high-dimensional videos
• Actions being clicks or robotic input 

Table 1: R2 scores (diag " / sep #) for the identification of
the causal variables on CausalWorld and iTHOR.

Models CausalWorld iTHOR
iVAE (Khemakhem et al., 2020a) 0.28 / 0.00 0.48 / 0.35
LEAP (Yao et al., 2022b) 0.30 / 0.00 0.63 / 0.45
DMS (Lachapelle et al., 2022b) 0.32 / 0.00 0.61 / 0.40
BISCUIT-NF (Ours) 0.97 / 0.01 0.96 / 0.15

all interactions are necessarily binary. In particular, the col-
lisions between the robot and the cube have different effects
depending on the velocity and direction of the fingers of the
robot, which are not part of the state of the causal variables
at the previous time step. Additionally, the robotic system is
present in the observation/image, while our theoretical re-
sults assume that Rt is not a direct cause of Xt. We adapt
BISCUIT-NF and the baselines to this case by adding Rt as
additional information to the decoder, effectively removing
the need to model Rt in the latent space.

On this task, BISCUIT identifies the causal variables well,
as seen in Table 1. Because the cube position, velocity and
rotation share the same interactions, in the evaluation we
consider them as a multidimensional variable. Although
the true model cannot be fully described by binary interac-
tion variables, BISCUIT still models the binary information
of whether a collision happens or not for the cube, since
it is the most important part of the dynamics. We verify
this in Appendix C.2.3 by measuring the F1 score between
the predicted interaction variables and ground truth interac-
tions/collisions. BISCUIT achieves an F1 score of 50% for
all cube-arm interactions, which indicates a high similarity
between the learned interaction and the ground truth col-
lisions considering that collisions only happen in approxi-
mately 5% of the frames. The mismatches are mostly due to
the learned interactions being more conservative, i.e., being
1 already a frame too early sometimes. Meanwhile, none of
the baselines are able to reconstruct the image sufficiently,
missing the robotic arms and the cube (see Appendix C.2.3).
While this might improve with significant tuning effort,
BISCUIT-NF is not sensitive to the difficulty of the recon-
struction due to its separate autoencoder training stage.

6.3 ITHOR - EMBODIED AI

To illustrate the potential of causal representation learning
in embodied AI, we apply BISCUIT to the iTHOR environ-
ment (Kolve et al., 2017). In this environment, an embod-
ied AI agent can perform actions on various objects in an
3D indoor scene such as a kitchen. These agent-object in-
teractions can often be described by a binary variable, e.g.,
pickup/put down an object, open/close a door, turn on/off
an object, etc., which makes it an ideal setup for BISCUIT.

Our goal in this environment is to identify the causal vari-
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Figure 7: Visualizing the learned interaction variables of
BISCUIT for an example input image (left). We show the
locations, i.e., values of Rt 2 [0, 1]2, for which each inter-
action variable is greater than zero/active as different colors.
For readability, only nine interaction variables are shown.
The right image is an overlay of both. BISCUIT accurately
learns the interactions and adapts them to the input image.

ables, i.e., the objects and their states, from sequences of in-
teractions. We perform this task on the kitchen environment
shown in Figure 5c. This environment contains two movable
objects, i.e., a plate and an egg, and seven static objects, e.g.,
a microwave and a stove. Overall, we have 18 causal vari-
ables, which include both continuous, e.g., the location of
the plate, and binary variables, e.g., whether the microwave
is on or off. Causal variables influence each other by state
changes, e.g., the egg gets cooked when it is in the pan and
the stove is turned on. Further, the set of possible actions
that can be performed depends on the previous time step,
e.g., only one object can be picked up at a time. For training,
we generate a dataset where we randomly pick a valid action
at each time step. We model the regime variable Rt as a two-
dimensional pixel coordinate, which is the position of a pixel
showing the interacted object in the image (Rt 2 [0, 1]2).
This simulates iTHOR’s web demo (Kolve et al., 2017),
where a user interacts with objects by clicking on them.

We train BISCUIT-NF and our baselines on this dataset,
and compare the latent representation to the ground truth
causal variables in terms of the R2 score in Table 1. Al-
though the baselines reconstruct the image mostly well, the
causal variables are highly entangled in their representa-
tions. In contrast, BISCUIT identifies and separates most of
the causal variables optimally, except for the two movable
objects (egg/plate). This is likely due to the high inherent
correlation of the two objects, since their positions cannot
overlap and only one of them can be picked up at a time.

Besides evaluating the causal representation, we also visual-
ize the learned interaction variables of BISCUIT in Figure 7.
Here, each color represents the region in which BISCUIT
identified an interaction with a different causal variable. Fig-
ure 7 shows that BISCUIT has identified the correct interac-
tion region for each object. Moreover, it allows for context-
dependent interactions, as the location of the plate influ-
ences the region of its corresponding interaction variable.

Finally, we can use the learned causal representation to per-

(a) Voronoi (b) CausalWorld (c) iTHOR

Figure 5: Example figures of our three environments with
increasing complexity: Voronoi (Lippe et al., 2023), Causal-
World (Ahmed et al., 2020), and iTHOR (Kolve et al., 2017).

these interactions from a regime variable Rt 2 [0, 1]2 which
is the 2D location of the robotic arm on the image. When
the robotic arm interacts with a variable, its mean is set to
zero, which resembles a stochastic perfect intervention.

Evaluation We generate five Voronoi systems with six
causal variables, and five systems with nine variables. We
compare BISCUIT to iVAE (Khemakhem et al., 2020a),
LEAP (Yao et al., 2022b), and Disentanglement via Mecha-
nism Sparsity (DMS) (Lachapelle et al., 2022b), since all use
a regime variable. We do not compare with CITRIS (Lippe
et al., 2022b, 2023), because it requires known intervention
targets. We follow Lippe et al. (2023) in evaluating the mod-
els on a held-out test set where all causal variables are in-
dependently sampled. We calculate the coefficient of deter-
mination (Wright, 1921), also called the R2 score, between
each causal variable Ci and each learned latent variable zj ,
denoted by R2

ij . If a model identifies the causal variables ac-
cording to Definition 3.1, then for each causal variable Ci,
there exists one latent variable zj for which R2

ij = 1, while
it is zero for all others. Since the alignment of the learned la-
tent variables to causal variables is not known, we report R2

scores for the permutation ⇡ that maximizes the diagonal
of the R2 matrix, i.e., R2-diag = 1/K

PK
i=1 R

2
i,⇡(i) (where

1 is optimal). To account for spurious modeled correlation,
we also report the maximum correlation besides this align-
ment: R2-sep = 1/K

PK
i=1 maxj 6=⇡(i) R

2
ij (optimal 0).

Results The results in Figure 6a show that BISCUIT iden-
tifies the causal variables with high accuracy for both graphs
with six and nine variables. In comparison, all baselines
struggle to identify the causal variables, often falling back
to modeling the colors as latent variables instead. While the
assumptions of iVAE and LEAP do not hold for additive
Gaussian noise models, the assumptions of DMS, including
the graph sparsity, mostly hold. Still, BISCUIT is the only
method to consistently identify the true variables, illustrat-
ing that its stable optimization and robustness.

Minimal Number of Regimes To verify that BISCUIT
only requires blog2 Kc+2 different regimes (Theorem 3.3),
we repeat the previous experiments with reducing the inter-
action maps to a minimum. This results in four sets of in-
teractions for six variables, and five for nine variables. Fig-

(a) Random Interactions (b) Minimal Interactions

Figure 6: Results on the Voronoi benchmark averaged over
10 seeds. Solid bars show the mean R2-diag score (higher is
better), and striped bars the R2-sep scores (lower is better,
non-visible bars indicate close-to zero values). BISCUIT
accurately identifies the causal variables across settings.

ure 6b shows that BISCUIT still correctly identifies causal
variables in this setting, supporting our theoretical results.

Learned Intervention Targets After training, we can use
the interaction variables Î1, ..., ÎM learned by BISCUIT to
identify the regions in which the robotic arm interacts with a
causal variable. Based on our theoretical results, we expect
that some of the learned variables are identical to the true
interaction variables I1, ...IK up to permutations and sign-
flips. In all settings, we find that the learned binary variables
match the true interaction variables with an average F1 score
of 98% for the same permutation of variables as in the R2

evaluation. This shows that BISCUIT identified the true
interaction variables. Thus, in practice, one could use a few
samples with labeled interaction variables to identify the
learned permutation of the model.

6.2 CAUSALWORLD

CausalWorld (Ahmed et al., 2020) is a robotic manipula-
tion environment with a tri-finger robot, which can interact
with objects in an enclosed space by touch (see Figure 5b).
The environment also allows for interventions on various
environment parameters, including the colors or friction pa-
rameters of individual elements. We experiment on this en-
vironment by recording the robot’s interactions with a cube.
Besides the cube position, rotation and velocity, the causal
variables are the colors of the three fingertips, as well as
the floor, stage and cube friction, which we visualize by the
colors of the respective objects. All colors and friction pa-
rameters follow an additive Gaussian noise model. When a
robot finger touches the cube, we perform a stochastic per-
fect intervention on its color. Similarly, an interaction with
the friction parameters correspond to touching these objects
with all three fingers. The regime variable Rt is modeled by
the angles of the three motors per robot finger from the cur-
rent and previous time step, providing velocity information.

This environment provides two new challenges. Firstly, not


