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What is BISCUIT?

BISCUIT learns causal representations from videos of i * Evaluating accuracy of identifying causal variables from high-dimensional videos

Interactive systems * Actions being clicks or robotic input

* Example: identify the causal variables (e.g. microwave L R
state, plate position, etc.) of the kitchen environment et o7 Synthetic Environment (additive Gaussian noise) Robotic Environments

Key assumption: interactions between agent and a causal S —— EEE \VAE BN LEAP [EEN DMS EEE BISCUIT (Ours) Table 1: R? scores (diag 1/ sep J) for the identification of

. . . . . . b e T o ra By N NN,/ 7 the causal variables on CausalWorld and iTHOR.
variable can be described by a binary interaction variable = ° = = SR SIS - 1.00

Models CausalWorld iTHOR

1VAE (Khemakhem et al., 2020a) 0.28 /0.00 0.48/0.35
LEAP (Yao et al., 2022b) 0.30/0.00 0.63/0.45
DMS (Lachapelle et al., 2022b) 0.32/0.00 0.61/0.40
BISCUIT-NF (Ours) 0.97/0.01 0.96 / 0.15

* Interventional (e.g. open microwave) vs observational

We identify
o  Temporal VAE with causal vars in latent space and MLPs learning interaction vars
Ca u Sa I Va rl a b I es * Alternative setup: normalizing flow applied on autoencoder representation

f = = : & BISCUIT
rO m I nte ra Ct I O n S; Env'mnet e Latent interventions by (1) encoding two images, (2) replacing latents of first image

’ . o\NO\,e et . . . .
. . Al A g0® T @™ 0™ egrned by latents of second image for respective causal variables, (3) decoding new latents
e . g . I n E bOd I e d AI . —N; | Previous frame variables * Achieves novel combinations of causal vars, e.g. uncooked egg on burning stove
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Causal variables relatlons * IniTHOR, an action is a random x-y position of object interacted with

‘ * Visualizing learned interaction variables for each causal variable segments objects
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Interactlons

 Assumption 1: each causal variable has a distinct interaction pattern
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* Assumption 2: mechanisms sufficiently vary on intervention or over time

* Allows for additive Gaussian noise models if mean changes over time
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