
Hierarchical Multi-label Object Detection of
Rare Classes for Autonomous Driving

Bachelor Thesis

for the

Bachelor of Engineering

from the Course of Studies IT-Automotive

at the Cooperative State University Baden-Württemberg Stuttgart

by

Phillip Lippe

20. August 2018

Time of Project 11. June 2018 to 20. August 2018

Student ID, Course 9045534, IT-Automotive 2015

Training Company Daimler AG, Stuttgart

Supervisor of Training Company Jonas Uhrig

Reviewer of Cooperative University Andreas Baisch

Author’s declaration

Ich versichere hiermit, dass ich meine Bachelorarbeit mit dem Thema: Hierarchical Multi-
label Object Detection of Rare Classes for Autonomous Driving selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Ich ver-
sichere zudem, dass die eingereichte elektronische Fassung mit der gedruckten Fassung
übereinstimmt.

Stuttgart, 20. August 2018

Phillip Lippe

Abstract

An autonomously driving vehicle has to understand complex urban street scenes
to navigate through tra�c safely. Modern techniques of Deep Learning enable to
accurately detect objects like other vehicles or pedestrians in an image. Usually, to
select a category for an object, an artificial neural network predicts a probability
distribution for a predefined class set choosing the category with the highest value.
However, within the class set, relationships and similarities are neglected although
the objects can be ordered in a hierarchical manner o�ering several benefits. Thus,
the following thesis deals with introducing a hierarchical class structure for ana-
lyzing tra�c scenarios with a particular interest in optimizing the accuracy of rare
classes.

The hierarchy is implemented as a post-processing step so that the network still
predicts a single class vector. During inference, the correct class is determined by
selecting the node with the highest score on the first level of the hierarchy, and
recursively continuing the search with its child classes. The prediction can stop at
an inner node if the score is lower than a predefined threshold. Object attributes
are added to the class structure as an independent class set which is evaluated after
the class search has finished. Besides other techniques, the network is optimized
regarding rare classes by using a novel metric loss function based on a hierarchical
adaption of the Intersection over Union (IoU). The approaches are tested on the
task of semantic segmentation. In experiments, the hierarchical classifiers signifi-
cantly outperform networks trained on a flat class set by up to 3.5% of the mean
IoU on the Cityscapes validation dataset. Even a hierarchy of about 70 classes
achieved a similar accuracy than the flat version with less than half the number of
categories while generating a much more detailed classification of the tra�c scene.

i

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Proposed Approach . 3
1.3 Outline . 4

2 Foundations 5
2.1 Machine Learning . 5
2.2 Artificial Neural Networks . 10
2.3 Convolutional Neural Networks . 14
2.4 Image understanding with CNNs . 21
2.5 Related work . 29

3 Hierarchical Object Detection 34
3.1 Hierarchical classification . 34
3.2 Optimization on rare classes . 43
3.3 Hierarchical metric . 49
3.4 Metric Loss Function . 59

4 Experiments 69
4.1 Experimental setup . 69
4.2 Hierarchical classifier for Semantic Segmentation 70
4.3 Testing scalability of hierarchical classification 76
4.4 Threshold adaptation . 80

5 Outlook 86

6 Conclusion 90

A Dataset distribution 100
A.1 Training Datasets . 100
A.2 Validation Datasets . 108

B Label Hierarchies 113
B.1 Small-scale hierarchy . 113
B.2 Standard hierarchy . 114
B.3 Large-scale hierarchy . 115

ii

List of Figures
1 Typical urban street scene [12] . 1
2 Hierarchical classification . 3
3 Relations of T, P and E . 5
4 Supervised learning examples [75, 12] . 8
5 Reinforcement learning [88] . 9
6 Artificial neuron architecture [15] . 11
7 Comparison of activation functions . 11
8 Network structures [15] . 13
9 Unrolled RNN [66] . 14
10 Convolution operation [41] . 15
11 Pooling layer [3] . 16
12 AlexNet [46] . 18
13 Inception modules [89] . 19
14 Residual block [32] . 20
15 ResNet Explanation [95] . 21
16 Example of semantic segmentation [12] 22
17 Semantic segmentation with fully convolution neural networks [65, 12] . . 23
18 R-CNN architecture [24] . 24
19 YOLO model [70] . 25
20 Single Shot Multibox Detector [56] . 26
21 KITTI [22] . 27
22 Cityscapes [12] . 28
23 Mapillary [62] . 29
24 Label hierarchy based on WordNet [68] 30
25 Hierarchical classification on WordNet [68] 30
26 Label hierarchy of Cityscapes, Mapillary Vistas and GTSDB [58] 32
27 Multi-stage semantic hierarchy [58] . 33
28 Hierarchy compared to flat classification 35
29 Comparison of tree and DAG taxonomies 36
30 Variations of hierarchical classification [78] 38
31 Handling object attributes in hierarchies 41
32 Class distribution of Cityscapes by pixels [12] 44
33 Loss function for di�erent focusing parameters [55] 47
34 Weighting classes by moving average filters 49
35 Label-dependent moving average filters 50
36 Example hierarchy . 55
37 Depth-dependent distance metric . 56
38 Comparison of distance-based approaches 74
39 Prediction for object attributes . 75
40 Remaining problems for object attributes 76
41 Predictions of di�erent hierarchies . 77
42 Prediction distribution of two examples 80

iii

43 Threshold adaption . 82
44 Class correlations . 83
45 Correlation between classifiers . 85
46 Novel objects . 89
47 Small-scale hierarchy . 113
48 Standard hierarchy . 114
49 Large-scale hierarchy . 115
50 Larger figures of large-scale hierarchy . 116
51 Larger figures of large-scale hierarchy (infrastructure) 117

iv

List of Equations
2.1 Cross Entropy [27] . 7
2.2 Cross Entropy for classification [27] . 7
2.3 Binary Cross Entropy (BCE) [27] . 7
2.4 Joint distribution in unsupervised learning [27] 9
2.5 Converting supervised, conditional distributions to joint distributions [27] . 9
2.6 Mathematical representation of an artificial neuron [15] 10
2.7 Softmax [27] . 16
2.8 Log-likelihood softmax [27] . 17
2.9 Hierarchical, conditional class probabilities [68] 31
3.1 Focal loss for binary cross entropy [55] . 47
3.2 Precision measure [14, 82] . 52
3.3 Recall measure [14, 82] . 52
3.4 F-score [14, 82] . 53
3.5 Accuracy rate [14, 82] . 53
3.6 Intersection over Union (IoU) score [67] . 53
3.7 Hierarchical precision measure [14] . 54
3.8 Hierarchical recall measure [14] . 54
3.9 Distance contribution [14, 87] . 55
3.10 Precision and recall measure with distance contribution [14, 87] 56
3.11 Adapted distance contribution . 58
3.12 Hierarchical confusion matrix’s parameters 58
3.13 Hierarchical measures . 58
3.14 Approximated confusion matrix parameters 60
3.15 Approximated IoU score . 60
3.16 Gradients of approximated IoU score . 61
3.17 Class imbalance invariance for subclasses . 62
3.18 Conditional IoU loss along the path from the root node to a class 63
3.19 Weighting IoU loss by leafs . 63
3.20 Propagating false positives throughout the hierarchy 63
3.21 Example for propagating false positives . 64
3.22 Definition for binary MAF weights . 65
3.23 MAF weights for IoU loss without subclasses 65
3.24 MAF weights for IoU loss with descendants 65
3.25 Adjusted MAF weights for IoU loss without descendants 66
3.26 Label-dependent weight factors for false positives 66
3.27 Minimum number of labels for true positives 66
3.28 Label number adaptation for false positives 67
3.29 Distance weighting for false positives . 67
3.30 Distance weighting for true positives . 68

v

List of abbreviations

BCE Binary Cross Entropy

CNN Convolutional Neural Network

DAG Directed Acyclic Graph

GPU Graphics Processing Unit

GRU Gated Recurrent Unit [10]

IoU Intersection over Union

LSTM Long Short-Term Memory [35]

MSCOCO Microsoft Common Objects in Context [54]

ReLU Rectified Linear Unit [61]

RGB Red-Green-Blue (color model)

RNN Recurrent Neural Network

vi

List of Tables
2 Confusion matrix [14] . 51
3 Example of confusion matrix for multi-class classification 52
4 Performances of various experiment settings 72
5 Overview of the cityscapes training dataset 102
6 Overview of the cityscapes special training dataset 104
7 Overview of the mapillary training dataset 107
8 Overview of the cityscapes validation dataset 109
9 Overview of the mapillary large-scale validation dataset 112

vii

1. Introduction

1. Introduction
1.1. Motivation
The vision of autonomous driving is becoming reality step by step. Since 1987 a research
project called PROMETHEUS [98] has successfully led to the first autonomous vehicle,
many companies started to further develop this technology and make it ready for series
production. For example, Mercedes Benz presented the prototype S500 Intelligent Drive
in 2013 [101]. This system was able to drive the approximately 100km route between
Mannheim and Pforzheim autonomously equipped by only sensors out of series produc-
tion.

However, autonomous driving remains complex and challenging because there are so
many possible scenarios that a car has to solve. Such a system has to tackle three main
tasks: detection of its surrounding, understanding of the environment and selecting its
action and trajectory. Multiple di�erent sensors like camera, radar and lidar observe
all objects around the ego vehicle. Because the outputs of these sensors only consist of
pixels or point clouds, an interpretation system processes the raw data to extract objects
like pedestrians and vehicles, and other relevant information. As the last step, the car
has to plan a safe and comfortable trajectory where it will drive. A typical urban street
scene that illustrates the challenges for autonomous driving is shown in Figure 1.

Figure 1: A typical urban street scene contains several objects like pedestrians, vehicles
and tra�c signs. Also, di�erent kind of surfaces need to be distinguished
determining the space where the car can drive. The detection of objects is
complicated by shadows, occlusion and more visual e�ects [12].

Considering the human as a driver in a car, it is noticeable that he only needs a sin-
gle sensor for these steps: the eye. Without any distance sensors or radars, a person
manages to assess and react to the situation. Besides, most signals in tra�c are based
on visuals, such as tra�c lights and signs. Consequently, the camera is one of the most
critical sensors to realize autonomous driving.

1

1. Introduction

Although the interpretation of an image is not an issue for a human, it remains to be a
tough challenge for a computer [39]. Images only represent a two-dimensional reflection
of a three-dimensional environment. Thus, to understand and analyze the illustrated
scene, the interpretation system needs to reconstruct the three-dimensional context. A
human daily interacts with such an environment whereas a computer only processes pix-
els in two dimensions. Furthermore, objects in a scene need to be detected regardless of
its perspective, size, brightness, color, background and several more properties. Besides,
occlusion and blurriness complicates the task.

In the last decade, the field of computer vision experienced a significant change due
to modern techniques like machine learning. Since 2012, when the artificial neural net-
work called AlexNet [46] outperformed humans in the ImageNet challenge [75] where
images are classified in one of 1,000 possible categories, machine learning became a pop-
ular research topic and application for intelligent systems. Such algorithms learn from
huge datasets and optimize their internal parameters to approximate the correct out-
put. Today, deep neural networks are applied for the task of image understanding in the
context of autonomous driving and are able to recognize various object types accurately
[12, 22, 39, 62].

A conventional method to express the analyzed information of an RGB image is se-
mantic segmentation where every pixel is assigned to a class out of a predefined set. In
case of the example image in Figure 1, a neural network would classify the pixels into
pedestrians, passenger-cars, tra�c lights and many more. The classification is performed
by determining a probability distribution over the possible classes and selecting the class
with the highest value. However, not every pixel can always be certainly assigned to one
of the set. For example, in Figure 1, even for a human, the vehicles and infrastructures
at the end of the road are hard to categorize due to the blurry pixels. Also, no class is
specified for the bulky waste on the left sidewalk next to the pharmacy.

Still, a typical neural network would select a class of the predefined set for both kind
of pixels which would lead to many false predictions. If a human would have to assign
a class to every pixel, he probably chooses a di�erent method similar to the structure of
the natural language: a hierarchical classification. Multiple classes can be grouped to a
more general category, like bicycles and motorcycles to ridable vehicles, until only the
root node is left. A prediction consists of a path from the root node to the final class.
An example is visualized in Figure 2. In this hierarchical structure, the bulky waste
can be certainly categorized as objects that the car should not run over. Furthermore,
the blurry objects in the background can be assigned to general classes like vehicle and
infrastructure instead of unnecessarily selecting a more specific class that is probably
wrong.

A hierarchical classification has even more benefits. Datasets like Cityscapes [12] con-
tain labels for about 25 di�erent classes including eight categories of vehicles. However,

2

1. Introduction

Vehicle

Passenger-carLarge vehicle HumanAnimal

Obstacle

Vulnerable road user

… …

Figure 2: Objects are classified in a hierarchical structure so that the root node, for
example obstacle, is assigned to almost all objects. Every level of the hierarchy
splits up the set of objects, until the leaf nodes contain the most specific classes.
In the Figure, example objects extracted from Cityscapes [12] are placed on
the right to every node.

to obey all tra�c rules, a much more distinct disposition is needed as an autonomously
driving vehicle has to react to police cars and fire trucks. Within the dataset, these
duties are ignored so that a police car is labeled as a general passenger car. Even if the
dataset would distinguish between both vehicles, the police cars occur less frequently and
are therefore harder to detect for a network, although it shares some significant features
with other cars. A hierarchical class structure can express such relationships so that the
duties can be learned in parallel to the vehicle category. Also, if multiple, heterogeneous
datasets are used that contain di�erent detailed labels, a hierarchical classification can
be simultaneously trained on all sets whereas the most general classes could only be used
for a standard classifier.

As these benefits are crucial for understanding urban street scenes, this thesis deals
with the implementation of a hierarchical class structure for the task of semantic seg-
mentation with deep neural networks.

1.2. Proposed Approach
To adapt the concept of hierarchical classification for computer vision, several tasks need
to be tackled This thesis concentrates on the following three:

Hierarchical class structure Hierarchical classifiers are already applied across di�erent
application domains including text classification [17, 87] and gene categorization
[8, 19]. The architectures of the classifiers alternate in some significant properties.
For example, the local classifier architecture applied an own classifier for each
node independently, or a global classifier determines the probabilities for every

3

1. Introduction

class in a single evaluation. However, most approaches share the same procedure
to determine the predicted class during inference. Starting at the first level of
the hierarchy, the probabilities of each node are compared. The node with the
highest probability is selected, and the search is recursively continued until either
the prediction ends in a leaf, or the probability of the selected class is lower than
a specified threshold. The second criterium enables predictions of an inner node if
no descendant can be certainly chosen.
To select the best fitting approach for the task of semantic segmentation, this
thesis discusses di�erent architectures of hierarchical classifiers and sets those into
context with deep neural networks.

Optimizing on rare classes A common challenge for machine learning algorithms is to
handle imbalanced data [30, 31, 45]. A hierarchical class structure can improve
the accuracy on such classes by sharing features between nodes having the same
ancestor. Furthermore, the loss function regarding which the network tries to
optimize its internal parameters, can be shifted. Moving average filters are applied
to measure the detection performance of the network during training and weighing
the loss to focus on poorly classified categories. Another aspect that is discussed
in this thesis is a metric loss function that is invariant to the number of pixels per
class. The function is further adapted to the hierarchical structure taking the class
relationships into account.

Hierarchical metric Usually, deep neural networks for semantic segmentation are eval-
uated by metrics comparing the prediction to human-labeled images. However,
standard measurements do not take the class relationships into account so that a
misclassification of a bus as a truck is considered similarly as if the network would
have predicted the class road. Also, inner nodes that constitute a more general
classification cannot be evaluated with flat metrics. To fairly compare the perfor-
mances of di�erent hierarchical classifiers, a new metric needs to be developed that
reflects the semantic distance of the prediction and correct class in the hierarchy.

1.3. Outline
Besides the introduction, the following thesis is divided into five parts. Section 2 in-
troduces the area of machine learning and artificial neural networks. Furthermore, it
summarizes related works that are taken into account. The methods developed for the
application of hierarchical classification for semantic segmentation are described in Sec-
tion 3. Experiments that are implemented for testing the proposed approaches and their
results are discussed in Section 4. At the end of this thesis, an outlook of further research
and application is discussed followed by an overall conclusion.

4

2. Foundations

2. Foundations
This section gives a brief introduction to the field of machine learning and its application
in computer vision. The basics of general machine learning are explained in the first
subsection, while the following subsection reviews artificial neural networks as a part
of learning algorithms. Subsequent sections give a deeper insight into Convolutional
Neural Networks and their application in the field of computer vision. As the last part
of this section, related works are presented and summarized.

2.1. Machine Learning
The field of machine learning summarizes algorithms that become more accurate in pre-
dicting outcomes without being explicitly programmed [48]. The basic concept is using
statistical analysis of received input data and its corresponding correct output. But what
learning actually means in the context of algorithms is succinctly defined by Mitchell [59]:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measures P, if its performance at tasks in T, as
measured by P, improves with experience E.” [59, p. 2]

Learning
Algorithm

Task T Performance
Measure P Experience E

Perform on Optimize with
regards to

Learn from

Figure 3: Overview of the relations between the learning algorithm and its task T, per-
formance measure P and experience E. While T specifies the process, E defines
how the datasets look like and P the way algorithms learn from the data.

The interaction between task, performance and experience is shown in Figure 3 and
described in the following sections. The layout is based on [27, 59] to give a brief
introduction to the huge area of machine learning.

2.1.1. Task T
A learning algorithm is designed to solve a specific task. This task defines how input
should be processed and what the result of this algorithm looks like. As an example, if
a robot should be able to walk, the task it tries to solve is walking. The input could be

5

2. Foundations

an RGB image of its surrounding while the output is the leg’s movement.

When the algorithm is learning on a task, the input it gets is called an example. An
example x is a collection of features that have been measured as a sample input of the
algorithm’s system. Mathematically, the example is represented as a vector x œ Rn

which elements are features. For an image, this means that the pixel values are the
features of the example.

After defining what a task is and how an input looks like they could be distinguished
in di�erent kinds. Due to the huge variety of possible tasks the following ones represent
a small subset of the most common machine learning tasks. For a more detailed list see
[27].

Classification One of the basic tasks of learning algorithms is specifying the input’s
category among multiple possibilities. This means that the algorithm represents
a function f : Rn æ {1, ..., k} that classifies the input example with its features
to one of k categories. The output for choosing a category is usually defined by
a numerical value y = f(x) or a one-hot vector y œ [0, 1]k for which f calculates
a probability distribution over classes. Typical use cases of this kind of tasks are
object and handwriting recognition on images [50, 75].

Regression Some tasks require continuous numerical values instead of discrete classes as
output. In comparison to classification, the represented function of the algorithm
is defined by f : Rn æ R. Regression is used for various motor control tasks [64]
and object localization in images [24, 56, 70].

Synthesis and sampling A di�erent kind of task is when the algorithm is asked to gen-
erate new data examples that are similar to those in the training dataset. The
input of this task is flexible and depends on the specific application. For predict-
ing the next frame of a video sequence like proposed in [20, 97], the algorithm’s
function is represented by f : Rn◊t æ R with t as number of input frames. Recent
approaches for this task often include Generative Adversarial Networks [28] that
reach performance to fool a human distinguishing between realistic and synthesized
data [29].

2.1.2. Performance Measure P
In order an algorithm can learn, it has to get a feedback of how good its predicted output
was. So a quantitative measurement of its performance must be designed, usually spe-
cific to the belonging task T. Besides, di�erent algorithms can easily be compared using
the same performance measurement. In the learning process, the goal of the algorithm
is to optimize its parameter towards performance gain.

A common way to measure the performance on tasks like classification is to define
the accuracy of a model. Accuracy is the proportion of examples for which the model

6

2. Foundations

predicts the correct output. The opposite of it would be the error rate, the proportion
of examples for which the model predicts an incorrect output. During training, the
performance is rated more precisely to optimize the internal parameters, so that the
output is close to the labels. The di�erence between prediction and the desired output
is measured by a loss function, or also called objective function, which the learning
algorithm tries to minimize. For classification, a popular loss function is cross entropy
[27]. It quantifies the di�erence between two probability distributions p and q by adding
the Kullback-Leibniz divergence DKL(p||q) to the entropy of p. Over a set of values
y œ �, the cross entropy is defined as:

H(p, q) = H(p) + DKL(p||q) = H(p) +
⁄

yœ�
p(y) · log p(y)

q(y) (2.1)

However, if both distributions are discrete and only defined for certain values, the
formula can be simplified by replacing the integral with a sum and eliminating the
entropy of p. In the case of classification, p is the ground truth distribution and q the
prediction while both depend on an input vector x. The value y is one of the output
categories and therefore discrete. The average cross entropy over a set of N examples
and M classes can be calculated as:

H(p, q) = ≠ 1
N

Nÿ

i=1

Mÿ

k=1
p(yk|xi) log q(yk|xi) (2.2)

The performance of a learning algorithm would be ideal if p = q where the Kullback-
Leibniz divergence is minimal at a value of 0. As the entropy H(p) cannot be a�ected
by q, the cross entropy also has a minimum of p = q. This is why learning algorithms
are often optimized to minimize the cross entropy of its prediction and the ground truth.

If only labels of 1/100% or 0/0% are used, the ground truth distribution is limited
to p(0|xi) = zi and p(1|xi) = 1 ≠ zi for the label z, and the prediction ẑ equally to
q(0|xi) = ẑi, and q(1|xi) = 1 ≠ ẑi. Therefore, the loss function can be simplified as
follows [27]:

BCE = ≠ 1
N

Nÿ

i=1
(zi log ẑi + (1 ≠ zi) log (1 ≠ ẑi)) (2.3)

This simplification of cross entropy is called Binary Cross Entropy (BCE), as it uses
binary labels. However, the loss function often depends on the application of the system
and has to be adjusted for every task.

2.1.3. Experience E
As the last part of the machine learning basics, the source from which the algorithm
learns should be explained. The basic component of experience is a dataset consisting
of a collection of examples. Mostly it is split up into a training and testing part. The

7

2. Foundations

training dataset is used for the algorithm to learn from, while on the testing dataset
the performance is measured regarding new images which the algorithm has not seen
for training. Evaluating on unknown examples checks whether the system has learned
general concepts of the dataset and can transfer them to the test dataset (called gener-
alization), or learned details and noise in the training data that solely fit on this specific
dataset (called overfitting).

Three di�erent common kinds of datasets could be distinguished depending on the
way the algorithm gains experience of the data:

Supervised learning The easiest way for an algorithm to learn how the estimated func-
tion looks like is having for every example the correct output, called label or ground
truth, and optimize it towards that. The structure of the ground truth depends
on the task which should be learned. Figure 4b shows an example for classifi-
cation, for which the label is only one value/class, and as a comparison, one for
semantic segmentation, where the algorithm tries to classify every pixel by its own.
Well known datasets for supervised learning are ImageNet [75] for image classifica-
tion and Cityscapes [12] for semantic understanding of urban street scenes. More
datasets will be discussed in detail in section 2.4.3.

Firetruck

(a) Classification label (b) Semantic label

Figure 4: (a) The input is an RGB image like the one shown on the left. The label
belonging to it is given by the class “Firetruck” [75]. (b) For semantic segmen-
tation, the label is not only one class. It is an image of the same resolution as
the input with a class label for every pixel. For visualization every class label
is represented by a di�erent color [12].

Looking from a statistical perspective, supervised learning has a random vector x
as input and learns to predict the correct label y by estimating p(y|x). The ground
truth has to be generated by an instructor that is mostly human. While creating
classification labels is quick, producing a semantic label for a high-resolution image
takes a long time. This is why datasets like Cityscapes [12] only have about 5,000
images whereas ImageNet [75] contains up to 14,000,000. Another application field
for supervised learning is regression tasks like bounding box estimation on images
(see section 2.4.2) [18, 24, 54, 56, 70].

Unsupervised learning In unsupervised learning, the ground truth is missing. The
algorithm has to learn useful properties of the dataset structure without explicitly
showing it. Usually, for deep learning, the aim is to capture the entire probability

8

2. Foundations

distribution either explicitly, as in density estimation, or implicitly, for generating
new images at the task of synthesis and sampling. Another possible application
after capturing the distribution is clustering the dataset in di�erent categories by
self-explored structures. So it learns a joint distribution of all features in the input
vector x œ Rn [27]:

p(x) =
nŸ

i=1
p(xi|x1, ..., xi≠1) (2.4)

Although the distribution estimation and the way of learning looks di�erent to
supervised learning, both could not be clearly separated. Given the ground truth,
every unsupervised task could be converted to supervised, and on the other hand
the conditional probability of the supervised way can be solved by learning the
joint distribution of p(x, y) by unsupervised methods [27]:

p(y|x) = p(x, y)
q

yÕ p(x, yÕ) (2.5)

A learning paradigm taking some of supervised and unsupervised is the semi-
supervised learning where for example only some examples have labels but not all
of them. Unsupervised learning mostly takes longer until the algorithm has fully
learned the distribution because it has to explore the structure by itself. However,
as a huge advantage no instructor is needed, and so much more data is easily avail-
able. Applications of unsupervised learning include speech recognition/generation
[76, 96] and video prediction [20, 97].

Reinforcement learning A common human way to learn new things is by “trial and
error” [36, 88]. Simulating this behavior, reinforcement learning is a paradigm in
which the algorithm interacts with its environment and learns from feedback or
reward that is returned. Therefore, the system selects actions in an environment
to maximize the expected reward. Figure 5 illustrates this framework.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 5: The learning algorithm is represented by an agent that takes an action At

and receives a reward Rt+1 from the environment. Its decision is based on the
current state St and reward Rt. In games the state usually is an RGB image
of the game the users sees and reward is given by the score [88].

9

2. Foundations

An intuitive application of such learning problems is playing games [40, 60]. In
classical computer games like Atari [60], there are a limited number of possible
actions the player can take. The algorithm has to learn the expected reward of an
action based on the input that is mostly the pixel values of the game. Approaches
like AlphaGo [79] have successfully shown the possibilities of reinforcement learn-
ing beating humans performance.

While games always have a certain reward signal (the simplest one is winning or
losing), some applications are missing that out. As an alternative, inverse rein-
forcement learning (IRL) is used where an expert demonstrates the task that the
algorithm should learn [2]. Reinforcement learning applies for developing intelli-
gent game agents [60, 79], motion planning [81] and much more.

2.2. Artificial Neural Networks
Artificial neural networks are graph-based models that are inspired by the human cog-
nition [15]. A single neuron represents the smallest unit or node of such a network
interlinked by many interconnections with other neurons using its activation to com-
municate. This behavior is simulated by simplified mathematical models for which the
neurons are represented as graph nodes and the connections are weighted directed edges.
To understand the mechanism of artificial neural networks, the following section is di-
vided into three parts. The first paragraph deepens the mathematical model of a neuron
while the second handles the basic architecture of a network and the third introduces
recurrent connections and their application.

2.2.1. Artificial neurons

Figure 6 shows the mathematical model of a single neuron. It has multiple external
inputs {x1, x2, ..., xn} which are usually the output of other connected neurons. All of
them are weighted by a corresponding parameter of {w1, w2, ..., wn} defining the rele-
vance of an input for this neuron. Finally, the weighted inputs are summed up to u for
which an additional parameter b is taken into account. This variable is called “bias”
and shifts the evaluated sum with a constant value. The neuron’s output y is calculated
by taking u as input for an activation function g(u) that defines the output’s mapping
to the input. During the learning process, the neuron adjusts its parameter including
input weights and bias towards the expected output.

Summarizing an artificial neuron is represented by the following equation [15]:

y = g(b +
ÿ

i

xi · wi) (2.6)

The activation function’s goal is reducing the output range of values because the
weighted sum u could theoretically be anything between ≠ inf and + inf. If many neu-

10

2. Foundations

x1

� g(.)

w1

x2

xn

u y w2

wn

b

Figure 6: The mathematical model of a neuron consists of a weighted sum of its inputs
that is shifted by a constant bias. The sum is given as input to an activation
function to get the final output [15].

rons are cascaded, the output value could quickly blow up. Furthermore, from a biolog-
ical point of view, the output of a neuron is the activation that is also fixed to specific
borders. Without an activation function, the weights and bias would simply do a linear
transformation of the input limiting the capacity to solve complex problems. So, it is
also used to introduce non-linearity to the artificial neuron. There are several activation
functions which can be used, but only three should be described further here: sigmoid,
tanh and ReLU.

The sigmoid function is defined as ‡(x) = 1
1+e≠x and plotted in Figure 7a. It is fully

di�erentiable and nonlinear while having a range of values between 0 and 1. As the gradi-
ents of the sigmoid function have a maximum for the output value of 0.5, it tends to push
all values to either 0 or 1. So it is a common activation function for the classification task.

≠4 ≠2 0 2 4
0

0.2

0.4

0.6

0.8

1

input x

ou
tp

ut
y

Sigmoid

(a) ‡(x)

≠2 ≠1 0 1 2
≠1

≠0.5

0

0.5

1

input x

ou
tp

ut
y

Hyperbolic tangent

(b) tanh(x)

≠2 ≠1 0 1 2
0

0.5

1

1.5

2

input x

ou
tp

ut
y

Rectified linear unit

(c) ReLU(x)

Figure 7: (a) The sigmoid function maps the inputs to a range of 0 to 1 while having
high gradients near to y = 0 to bring the output more to either 0 or 1. (b) The
hyperbolic tangent is similar to the sigmoid function but has a output range
of -1 to 1. (c) A rectified linear unit (ReLU) is 0 for all input lower than 0.
All other values are processed linearly so that they do not change.

Figure 7b shows the hyperbolic tangent that is defined as tanh(x) = e
x≠e

≠x

ex+e≠x . It can
be written by using the sigmoid function as tanh(x) = 2 · ‡(2x) ≠ 1 and shares most of
the properties with the sigmoid function. As the output range of values is between -1

11

2. Foundations

and 1 it is often used as output activation function for tasks like image generation.

Rectified linear unit (ReLU) is another more simpler activation function that is plot-
ted in Figure 7c. It is defined by the equation ReLU(x) = max(0, x) and so 0 for every
input lower than 0. The output range is [0, inf) what can still blow up. However, one
big advantage of this function is that it is less computationally expensive and the acti-
vations are sparse what makes the network more e�cient and faster to learn. ReLU is
everywhere di�erentiable except at x = 0 but has no gradients for x < 0.

Overall there is not the one activation function that can be used for every network.
Some activation functions have been shown to be better suited for specific tasks as
sigmoid is often used for binary classification output [70], tanh for synthesizing [20] and
ReLU for hidden layers inside the network [25, 46].

2.2.2. Deep Feedforward Networks

After analyzing the concept of a single neuron this paragraph deals with the intercon-
nection and combination of multiple neurons to a network. The quintessential artifi-
cial neural architectures are deep feedforward networks, or multilayer perceptrons [27].
These models are called feedforward because information flows through the whole net-
work without any connections in which the outputs of the model are fed back into itself.
Networks with such connections are called Recurrent Neural Networks (RNN) and are
described in Section 2.2.3.

In general, an artificial neural network consists of multiple layers that can be divided
into three main parts:

Input layer The first layer of a network receives information (data) from the external
environment. Frequently, these inputs are normalized between -1 and 1 for better
numerical precision for the mathematical operations and to keep the network’s
weight within a certain range [15, 27].

Hidden layers The main computing layers of a neural network are called hidden layers
because they are invisible for the external environment. The structure consists of
multiple, stacked neurons that are responsible for extracting patterns associated
with the input. Neurons are only connected between consecutive layers but not
within a single layer.

Output layer The last layer of a network is composed of neurons that are responsible
for predicting the final output based on the previous hidden layers. Similar to the
input of the network, the output is usually normalized as well.

The structure of a simple feedforward network with two hidden layers is shown in
Figure 8a. The input is processed straight forward through the network, and there is no
recurrent connection. In comparison, the model in Figure 8b has a feedback from the

12

2. Foundations

last output layer back to the network. With this, the next calculated output depends
on the result of the previous step and can learn from a time component (for details see
Section 2.2.3).

1 y

1

1

x1

y1

y2

2

2

3

x2

2

ym

x3

xn

3

n1

4
m

Input layer
1st Hidden neural

layer
n2

2nd Hidden neural
layer

Output neural
layer

(a) Feedforward Network

1

x1

y1

1

x2 2

1

ym

xn

n1

m

Feedback

1

(b) Feedback/Recurrent Net-
work

Figure 8: (a) This figure illustrates fully connected feedforward network with two hidden
layers. All neurons of one layer are connected to every neuron of the next layer
with no feedback connection [15]. (b) In comparison to feedforward network a
RNN has a feedback connection from one later neuron back to one in a earlier
layer [15].

In the example of Figure 8a, all input nodes are fully connected with all neurons
of the first hidden layer. Every neuron of this layer has, therefore, n inputs and n

corresponding weights next to one bias that has to be adjusted by learning. With n1
neurons, the first hidden layer contains (n + 1) · n1 learnable parameters. Layer two has
therefore (n1 + 1) · n2 and the output layer (n2 + 1) · m parameters. With an increasing
number of neurons, the amount of parameters blows up which becomes computational
expensive and hard to learn. Sparser layers are for example convolutions that operate
on a grid of features and are therefore mostly applied on images. As this thesis deals
with the task of image understanding, the convolutional neural networks are described
in detail in Section 2.3.

2.2.3. Recurrent Neural Networks

Recurrent Neural Networks (RNN) [74] are focused on processing a sequence of values
x0, ..., xn. Of course, such a sequence could also just be stacked together to one big input
to a multilayer network, but this would not be parameter e�cient. For example, con-
sider a model for language understanding that should extract a year out of a sentence.
Two samples are “I went to Nepal in 2009” and “In 2009, I went to Nepal” [27]. The
corresponding word appears in the first sentence at sixth and in the other at the second
position. Still, the parameters could be shared between these two-time steps.

Recurrent Neural Networks have, as in Section 2.2.2 described, feedback connections
from a neuron’s output back into the network. The values of these connections are held

13

2. Foundations

over time steps, so that processing input xt depends on computation results of xt≠1.

A better understanding of a recurrent network is unfolding it over multiple time steps,
as illustrated in Figure 9. Network A gets xt as input to generate its output ht. In ad-
dition, there is a connection over time steps, so that xt≠1 influences the prediction.
Therefore, xt≠1 is influenced by xt≠2 and so on, ht depends on the whole previous se-
quence x0, ..., xt.

Figure 9: A Recurrent Neural Network can be seen as a chain of multiple time steps with
feedback connections between them. Due to it is the same network, the same
weights are used for processing the input. Moreover, the recurrent output of
the previous step influences the final prediction [66].

The design and position of the feedback connection are based on the task. Some
examples are:

• RNNs that produce an output ht at every time step and have recurrent connections
between hidden units as shown in Figure 9.

• RNNs that produce an output ht at every time step that is taken as input for the
next time step. A common application for this design is video prediction [20, 97].

• RNNs that only produce a final output after reading a whole sequence. For this,
hidden units have recurrent connections in between to process and extract useful
information out of every single input. This variation is mostly applied to language
understanding [26, 83].

The detailed structure inside the network is not specified and can be adjusted to
the particular task. However, popular recurrent architectures include Long Short-Term
Memory networks [35] that solve the gradient vanishing problem for large input se-
quences.

2.3. Convolutional Neural Networks
A special kind of networks for processing data that has a known, grid-like topology like
images, are Convolutional Neural Networks (CNN) [49]. They are based on the primary
visual cortex of the brain and strongly inspired by neuroscientific research. CNNs usu-
ally consist of two important layers: the convolutional layer that is a variation of the

14

2. Foundations

mathematical operation called convolution, and the pooling layer that reduces the inner
width and height dimension of the data.

2.3.1. Architecture design

An example to motivate the usage of convolutions is having an RGB image of 64 ◊ 64
pixels as input to a network. If the first hidden layer consisting of a fully connected layer
with 1024 neurons, the needed amount of parameters would be the multiplication of the
number of pixels, color channels and neurons: 64 ·64 ·3 ·1024 = 12, 582, 912. One way to
reduce this number is by considering the geometry of the image. A pixel correlates much
more with its close neighbors than with far-o� pixels [3]. Since the correlation of inputs
is represented in the weights of a neuron, the connections could supposedly be reduced
to only a local region, called kernel, of the image, like 5 ◊ 5 pixels (see Figure 10). The
stride of such an operation defines the step size over which the kernel is applied on the
image. This causes the structure of the hidden layer to be a similar grid as the input.
The amount of weights for every neuron is reduced to the kernel size for each channel
(5 · 5 · 3 = 75) resulting in 75 ◊ 1024 = 76, 800 weights for all neurons.

Figure 10: A neuron in a convolutional layer is only connected to a local region of the
input. To apply di�erent weight setting on the same kernel, multiple neurons
are stacked behind each other which do not share the weights. However all
neurons in one channel have the same to reduce the number of parameters
[41].

Convolutional layers are going even further by sharing the weights between all neu-
rons. So that one layer does not only consist of one weight set, multiple neuron grids
are stacked on each other which are called channels. For example, applying a standard
convolution layer with a 5 ◊ 5 kernel and 64 channels on an input image of the size
64 ◊ 64 pixels, the first hidden layer would consist of 64 · 64 · 64 = 262, 144 neurons but
only have 5 · 5 · 3 · 64 = 4, 800 weight parameters.

The di�erent kernels of a convolutional layer could be seen as filters like edge filter
which are applied on the input. The output is often referred as a feature map because
the di�erent filters scan the image for special local features like a horizontal or vertical
line in an image. Moreover, if multiple convolutions are concatenated, the network learns
a hierarchy of features, whereas the low level features recognize small structures close

15

2. Foundations

to the RGB image, and the high level features combine those to detect objects that can
take the whole image [99].

However, after applying a convolution, the resulting output has the same size as the
input, but may not be so rich of information anymore [48]. To concentrate on the sig-
nificant features, a pooling layer summarizes a small neighborhood to a statistic like
selecting, for example, the maximum or mean value on 2 ◊ 2 patches. Thereby, the
height and width dimension can be down-sampled by using a stride reducing the com-
putational e�ort and improving statistical e�ciency [27]. It is worth mentioning that
pooling is done on each channel separately. Figure 11 illustrates the mechanism of a
max pooling layer on an image.

Figure 11: This figure illustrates the procedure of a max pooling layer with a kernel size
2 and stride 2. On every 2x2 pixel patch a max operation is applied to extract
only the highest values. This reduces the dimensionality of the input by the
factor of 2 and summarizes the local pixel values [3].

The max pooling operation is inspired by the biology where neurons that are strongly
activated exceeds their neighbors and weaken their influence. Pooled feature maps are
more likely to be invariant to noise or small translations, as a minor change of the input
does not significantly a�ect the summarized output. This property can help rather learn
whether some feature is present at all in a small area than the exact position of it, which
is especially important for applications like image classification.

The overall architecture of Convolutional Neural Networks consists of multiple stacked
convolutions, pooling operations and activation functions like ReLU. As the output
structure depends on the task of the network, the final layers are adjusted to it. For
example, the task of classification ends up in a 1D-vector, so that the final layer usually
is fully connected. The corresponding predictions have to be constrained between 0 and
1 representing the probabilities distribution over all classes while summing up to one. A
common way to ensure that is by applying the softmax function on the outputs z:

softmax (z)
i

= e
zi

q
j ezj

(2.7)

16

2. Foundations

One advantage of the softmax function is, that when applying loss functions like the
Cross Entropy which maximizes the log-likelihood, the calculation can be simplified as
the exp is reversed by log [27]:

log softmax (z)
i

= zi ≠ log
ÿ

j

e
zj (2.8)

The softmax function can also be applied for semantic segmentation [57, 65]. However,
the network architecture has to be adjusted to generate a label in the shape of the input
image, which is further discussed in Section 2.4.1.

2.3.2. Example architectures

Convolutional Neural Networks mainly consists of convolutions, ReLU activation func-
tions and pooling operations. Nevertheless, the concrete number, order and parameters
of these operations significantly influence the network’s performance. Therefore, this
section gives a brief overview of three selected, well-known CNN architectures.

AlexNet In 2012, Alex Krizhevsky, Ilya Sutskever, and Geo�rey Hinton proposed a new
deep convolutional neural network, called the AlexNet [46], which was trained to
classify over 1 million images in the ImageNet challenge [75] into 1000 di�erent
categories. Evaluating the model on a test dataset whether the correct class is
within the top 5 predictions, the AlexNet achieved an error rate of only 15.3%
significantly exceeding the previous state-of-the-art and other submissions. There-
fore, this publication constitutes one of the first outstanding results by CNNs in
the field of Computer Vision.
The input to the network is a 224 ◊ 224 ◊ 3 RGB image, on which a convolu-
tional layer with kernel size 11 and stride 4 is applied. This reduces the height
and width dimension to 55 with a channel size of 96. The following two convolu-
tions with subsequent max pooling further reduce the feature space. Next, three
additional convolutions and a final max pooling are applied before reshaping the
two-dimensional features into a linear vector. These values represent the input to
three subsequent fully connected layers, each consisting of 4096 neurons. Finally,
a softmax function is applied to the output of the last fully connected layer to
determine the probabilities distribution over 1000 classes.
Figure 12 summarizes the network architecture. Overall, the model contains about
60 million parameters and 650,000 neurons exceeding the memory of a single GPU
with 3GB RAM. Therefore, the network is split onto two GPUs running in parallel
and communicating only in certain layers to reduce training time.
Next, to the general layer structure, the AlexNet uses further techniques to improve
the performance. For example, after each convolutional and fully connected layer,
a ReLU [61] is applied as an activation function to decrease the training time
in comparison to saturating non-linear units like tanh. Although the ImageNet
dataset contains over 1 million images, the network might struggle with overfitting

17

2. Foundations

Figure 12: The architecture of the AlexNet consists of five convolutions, three max-
pooling and three fully-connected layers. The network is trained on two GPUs
on which the computations are divided as shown in the top- and bottom-row.
Communications between both GPUs is constrained to certain layers [46].

its 60 million parameters on the training examples. To prevent this, the input
images are augmented by cropping a random patch out of the original with the
size of 256 ◊ 256 pixels, and slightly alternating the values of the RGB channels.
Within the network, a technique called dropout [84] is applied which randomly sets
the output of a hidden neuron to zero removing it from the forward and backward
pass. This approach reduces co-adaptions of neurons and forces the network to
learn robust features [46].
From today’s perspective, the AlexNet constitutes a small architecture with only
a few layers. It can analyze small-scale images, but with increasing GPU speed
and memory, more complex networks like the GoogLeNet [89] or ResNet [32] can
be applied to gain higher accuracy. Still, various techniques introduced by the
AlexNet, like using ReLU, dropout and data augmentations, can be found in other
networks.

GoogLeNet Another famous network architecture is the GoogLeNet [89], which has won
the ImageNet challenge with a top-5 error rate of only 6.67% in 2014. The main
component of the model is the “Inception module” that is thought to represent
the optimal local structure. To develop the perfect module, the input needs to be
processed at various scales. On the one hand, features correlate within a small
local region, especially on the first layers of the network, which can be covered
by a 1 ◊ 1 convolution. However, there also exists clusters that are spread out
more spatially so that only a larger patch size can recognize these. To encounter
all problems, an Inception module consists of a convolution with kernel size 1 ◊ 1,
3 ◊ 3, 5 ◊ 5 and a max pooling which are applied in parallel on the same input
(see Figure 13a). The output features are concatenated in the end and constitute
the input to the next module.
The overall network consists of multiple, stacked Inception modules with increasing
channel sizes. Also, the convolutions, especially with larger patch sizes, have a
smaller number of channels to reduce the computational e�ort and following the

18

2. Foundations

1x1 convolutions 3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling

(a) Standard Inception module

1x1 convolutions

3x3 convolutions 5x5 convolutions

Filter
concatenation

Previous layer

3x3 max pooling1x1 convolutions 1x1 convolutions

1x1 convolutions

(b) Inception module with feature reduction

Figure 13: (a) The standard Inception module applies a convolution with kernel size
1 ◊ 1, 3 ◊ 3 and 5 ◊ 5 on the input in parallel. Furthermore, a max pooling
with a patch of 3 ◊ 3 computes additional features. Finally, the outputs are
concatenated over channels [89]. (b) To improve computational e�ciency,
1 ◊ 1 convolutions are applied before expensive operations like the 5 ◊ 5
convolution. Note, that the feature reduction of the max pooling is processed
after the operation, because it is not computationally expensive while the
subsequent 1 ◊ 1 convolution can enrich the pooled information [89].

hypothesis that there are less large-scale clusters than local ones [89]. Nevertheless,
multiple, sequentially applied Inception modules generate a larger channel size
that makes the convolutions expensive. A common way to reduce the feature
dimension is by applying a 1 ◊ 1 convolution right before the larger operation.
Hence, the channels are compressed, but the layer also includes additional ReLU
units introducing further non-linearity. This concept is visualized in Figure 13b.
The GoogLeNet architecture, submitted for the ImageNet challenge in 2014, con-
tained nine Inception modules with feature reduction. However, the first few layers
still consisted of simple convolutions with subsequent max pooling for e�ciency.
The output of the last Inception module (dimension 7 ◊ 7 ◊ 1024) is averaged over
height and width so that a 1024 large feature vector remains. On this, dropout, a
fully-connected layer and the final softmax is applied.
Containing 22 layers with learned parameters, the GoogLeNet is much deeper than
the AlexNet having only 8 layers. Still, it is memory e�cient containing just 5 mil-
lion parameters. The advantage of the GoogLeNet is that its complexity can easily
be adjusted to the specific task it is used for by introducing more Inception mod-
ules or varying the channel sizes. Moreover, there are multiple improvements and
variations of the Inception architecture. For example, [90] proposed the Inception-
v2 replacing large patch sizes with multiple small ones (two 3 ◊ 3 instead of 5 ◊ 5)
and introducing asymmetric 1 ◊ n and n ◊ 1 convolutions that together constitute
a n ◊ n patch with significantly fewer parameters. This variant is more e�cient
regarding memory and runtime, and, hence, might be applied on devices with lim-
ited resources. A more complex architecture is proposed by [91] by combining the
Inception module with residual connections of the ResNet [32], which is explained

19

2. Foundations

in the following paragraph.

ResNet The deeper the networks become, the harder it is to train them [32]. Although
problems like vanishing or exploding gradients [34] can be encountered by nor-
malization [4, 38], experiments have shown that the accuracy significantly drops
when using a large number of layers [32]. However, there exists a solution where
the deeper network with more layers has the same performance as the shallower
model by learning an identity mapping for the additional operations. Therefore,
the decreasing accuracy indicates that deeper networks are harder to optimize.
One way to address this problem is by using residual connections which were in-
troduced by the ResNet architecture [32] in 2015. The idea is to simplify the
representations of identity mappings as the non-linearity within the network ham-
pers such structures. Therefore, instead of plainly applying layers on each other,
residual connections are added that bypass multiple layers. This concept is imple-
mented by using stacked residual blocks visualized in Figure 14.
A residual block contains a few layers represented by a function F that process
the input as it is done in standard CNNs. In [32], F consists of two layers each
containing a convolution, mostly with kernel size 3 ◊ 3, followed by a batch nor-
malization [38] and a ReLU (excluding the last layer). Moreover, a skip connection
bypasses the input of the block to the output of the last layer where an element-
wise addition combines both feature maps. Hence, a residual block applied on the
input x, generates the output ‡ (F (x) + x) with ‡ as the activation function (in
the case of [32], ReLU is used as ‡).

identity

weight layer

weight layer
relu

reluF(x) + x

x

F(x) x

Figure 14: A residual block consists of two layers containing each a convolution and
batch normalization, but also a residual connection bypassing both layers
with an identity mapping. The output of the block is the sum of the features
of the last layer and the input [32].

Residual blocks are easier to be optimized towards an identity mapping, because
it is su�cient to output minimal values for F (x) and be independent to x instead
of learning an identity mapping for those layers [32]. Even networks with more
than 150 layers can be successfully trained with residual connections and exceed
the performance of any shallower variation. The advantages of this architecture
were shown in multiple competitions like winning the ImageNet challenge with
a top-5 error rate of 3.57% in 2015. Hence, the ResNet constitutes one of the
state-of-the-art Convolutional Neural Networks, especially for computer vision.

20

2. Foundations

=

Figure 15: Residual connections are mostly interpreted as skip connections over blocks,
as it is shown on the left side. However, visualizing all paths through the
network shows an unraveled view where the number of paths exponentially
increases with the number of blocks. The circular nodes represent element-
wise additions [95].

Still, the concept of the ResNet can also be viewed from a di�erent perspective. The
skip connection and the layers within can be interpreted as two di�erent paths, and
stacking multiple residual blocks on each other generate even more paths through
the network (see Figure 15). Analyzing the ResNet using this interpretation, it
can be seen that the di�erent paths do not strongly dependent on each other, so
that network gets robust against deleting single layers [95]. Moreover, the ResNet
further handles the vanishing gradient problem by supporting the gradient flow to
the first layers by the skip connections enabling the training of very deep networks
with more than 100 layers.
Besides the ResNet, there also exists variations or other architectures with which
very deep networks can be trained [85, 91]. One is, for example, the DenseNet
[37] that connects each layer within a block to every other layer in a feed-forward
fashion. However, the ResNet was one of the first and most popular networks to
reach a depth of more than 100.

2.4. Image understanding with CNNs
For the task of autonomous driving, it is essential to understand its environment by, i.e.
analyzing camera images. The Convolutional Neural Network architectures presented
in Section 2.3 focused on classifying the input image in only one of several categories.
However, this is not su�cient for a street scenario, as there are multiple objects like other
vehicles and pedestrians that need to be detected. Therefore, this section introduces two
common techniques for detailed image understanding: semantic segmentation where
the classification is done pixel-wise, and bounding box detection where each object is
approximated with a rectangle.

2.4.1. Semantic Segmentation

The goal of semantic segmentation is not to classify the whole image into one single
category, but to assign a class to every single pixel of the input image [39]. The result

21

2. Foundations

provides a detailed understanding of the scene that can be used to analyze the tra�c
environment of an autonomous car. An example for semantic segmentation is shown in
Figure 16.

Figure 16: An example street scenario with corresponding semantic segmentation label.
Every class is visualized in a di�erent color like cars in blue, pedestrians in
red and tra�c lights in orange. Image retrieved from [12].

To generate a high-resolution output by using a CNN, the network architecture is
often alternated to a fully convolutional model [57] training it end-to-end on semantic
labels. A fully convolutional network (FCN) extends the standard CNN architecture to
process inputs of arbitrary-size interpreting fully connected layers as convolutions with a
receptive field of the whole input. To upscale the compressed features to a full label im-
age, coarse, high-level information from deep layers are combined with low-level features
from shallower layers using backwards convolutions, also called deconvolutions. Instead
of multiplying a weight matrix with a local region of the input and summing it up, an
input pixel corresponds to a local region of the output. The deconvolution operation is
shown in the bottom part of Figure 17.

A deconvolution can be used to implement a simple, bilinear upsampling filter. How-
ever, the weights of the layer can also be learned as it is just a reversed convolution.
This concept was extended by [65] to learn a multilayer deconvolution network on top
of the standard convolutional model. The first part of the network constitutes a feature
extractor that analyzes the input image and compresses it into a multidimensional fea-
ture representation. The second part, the deconvolution network, tries to generate the
object segmentation based on the extracted features by using learned deconvolutions,
unpooling and ReLU activations. The unpooling operation is, similar to deconvolution,
the reverse operation of pooling whereas the locations of the selected, maximum values
in the convolution network are recorded and used to place the activations in the un-
pooling operations. Therefore, the deconvolution network is mostly a mirrored version
of the convolutional part with convolutions replaced by deconvolutions and poolings by
unpoolings. An example for such an architecture is visualized in Figure 17.

The convolution and deconvolution networks are not constrained to any certain struc-
ture and can be deployed with i.e. an AlexNet [46], GoogLeNet [89] or ResNet [32] (see

22

2. Foundations

Figure 17: The overall architecture consists of a convolution network that extracts fea-
tures from the input image and represents those in a low dimensional space,
and a deconvolution network that generates a semantic segmentation out-
put based on the extracted features. The deconvolution network mostly is a
mirrored version of the convolution network and applies the corresponding,
reversed operations like deconvolutions and unpooling. Figure adapted from
[65] with example images of [12].

Section 2.3.2). Furthermore, multiple improvements [9, 53, 100] have steadily increased
the performance of networks for semantic segmentation [21, 39]. A common technique is
to use skip connections from shallower layers of the convolution network to correspond-
ing layers in the deconvolution network to gain a higher accuracy by using coarse- and
fine-grained features [57, 72].

2.4.2. Bounding Box Detection

With semantic segmentation, an image can be analyzed pixel-wise and understood in
detail. However, single object instances that have to be extracted for tasks like track-
ing cannot be obtained from semantic labels, especially when multiple objects overlap.
Therefore, a new approach has to be developed for detecting object instances in images.

One conventional technique for this task is bounding box detection [24, 56, 70]. The
goal of bounding box detection is to detect all objects by approximating their position
with a rectangle that fits the object’s shape best. For every box, the position and shape,
mostly given by x and y coordinates of the center and width and height, as well as the
object category has to be determined. To implement this concept with Convolutional
Neural Networks, several challenges arise. First of all, every image contains an arbitrary
number of objects. Hence, a flexible output size is required, but neural networks are
optimized to fixed outputs [27, 70]. Another problem is that the objects significantly
di�er in their size. An object can cover the whole image, but it can also be only a
few pixels wide. The last challenge that should be mentioned here is the detection of

23

2. Foundations

multiple object categories in parallel. The network has to find and classify all objects in
an image that is very challenging for a considerable number of possible categories.

The first approaches with machine learning algorithms on bounding box detection were
based on a sliding window concept [24, 73, 77]. Therefore, patches of di�erent sizes and
positions are cropped from the image and processed by a classifier determining whether
the sub-image contains an object, and eventually its category. This approach does not
rely on any specific architecture of the classifier and is therefore easy to implement, but
the resulting boxes are inaccurate in their size and require higher computational e�ort
[70].

A more e�cient, multi-stage approach was introduced by R-CNN (Regions with CNN
features) [24] in 2014. The first step of the R-CNN is to propose multiple regions that
probably contain an object. R-CNN does not rely on any specific algorithm to generate
such region proposals, but in [24] selective search [93] was used for this task. The second
module is a CNN, e.g. an AlexNet [46] that extracts feature vectors from the objects.
The network is applied to the crop of the region that was proposed by the first module
and is further resized to a fixed, squared input image. The computed features for each
box are then classified by a Support Vector Machine, and a linear regressor tightens the
box of the object if the box contains an object. Figure 18 summarizes this concept.

Figure 18: R-CNN operates in a multi-stage manner where the first step is to generate
region proposals through an algorithm like selective search. These patches
are cropped out of the image and rescaled to a fixed, squared size. A CNN
extracts features that are subsequently used for classifying the objects [24].

The approach of R-CNN is intuitive, but also very slow. This is why an improved
version, Fast R-CNN [23], was developed that alternated the original approach on two
main aspects. Firstly, the feature extraction is performed only once on the whole image
and the feature vectors for single objects are obtained by using region of interest pool-
ing focusing on the features in the corresponding bounding box. Secondly, the Support
Vector Machine is replaced by a softmax layer resulting in one single CNN to train. A
further improvement is Faster R-CNN [71] that replaces the selective search algorithm
by an additional neural network, called region proposal network. This network operates

24

2. Foundations

on the last layer of the initial CNN in a sliding window manner reducing each 3◊3 patch
to a lower dimension like 256 features. For each of these representations, a set of boxes
with various sizes, called default or prior boxes, are specified, and two fully-connected
layers are applied to determine whether there is an object in the box or not, and the
shape adjustments of the default bounding boxes.

However, all variants of R-CNN are not fast enough to apply them in real time. The
first network achieving significant results on object detection with a performance of more
than 45 frames per second was YOLO (“You Only Look Once”) [68, 69, 70]. The name
derives from the strategy that a single neural network predicts bounding boxes and ob-
ject categories in one single evaluation only looking once at the image. To do this, the
image is divided into a grid whereas each cell contains multiple default boxes like in
Faster R-CNN and is responsible for detecting objects with their center within the cell.
For each box, a confidence score reflecting the certainty of the network that the box
contains an object, and the four shape parameters x, y, w and h are predicted. Only
default boxes with a confidence score greater a certain threshold, i.e. 0.5, are selected
as final predictions. The object class that is also determined by the network is shared
among all boxes within a cell. The concept is visualized in Figure 19.

Figure 19: The approach of YOLO is to divide the input image into a grid. For each
cell, the network predicts multiple boxes with a confidence score and an object
class that is shared among all boxes (visualized by color encoding). Combin-
ing both predictions, the final output are those boxes with a confidence higher
than a certain threshold [70].

The key idea of YOLO is how to calculate this grid e�ciently. The network within
YOLO is a CNN which architecture is like for the other approaches not set, but is often
referred to as base network. However, instead of sampling the output down to a single
feature vector, fully connected layers are applied on the last feature map to generate an
output size of the grid. The parameters for the shape of the box, the confidence scores or
the object classes are stacked over channels. Hence, if the grid has a size of 7◊7 with two

25

2. Foundations

default boxes and 20 classes, the output size is 7◊7◊(2·5+20) = 7◊7◊30. Still, YOLO
can make duplicate detection for the same objects. To prevent this, a non-maximum-
suppression (NMS) is applied on the final predictions removing those predictions that
have a large overlap with other predictions.

The disadvantages of YOLO are that it predicts fewer boxes than other approaches
thus struggling with many small objects that are close to each other. Also, the regres-
sion error for the bounding boxes is treated in the same way for small and large boxes,
although small boxes need to be more accurate. The second version of YOLO, called
YOLO9000 [68], improves the regression by predicting o�sets of hand-picked prior boxes
instead of unbounded coordinates making it easier for the network to learn. Moreover,
the fully connected layers are replaced by convolutions being able to train on multiple
di�erent resolutions. Also, the object class predictions are alternated to a hierarchical
classifier which is discussed in more detail in Section 2.5.1.

Nevertheless, YOLO’s predictions purely rely on coarse features as it solely performs
on the last layer. Therefore, a multilayer approach was proposed for another, well-known
architecture: Single Shot Multibox Detector (SSD) [56]. SSD has a similar architecture
as YOLO but significantly di�ers in certain parts. First of all, the box predictions rely
on prior boxes and their shape o�sets like it is used for the second version of YOLO and
Faster R-CNN. Also, in contrast to the confidence score of YOLO, SSD adds the class
background to the softmax vector representing whether the box is empty or not. The
most significant di�erence to all YOLO versions is that SSD predicts boxes on multiple
grids of various sizes. Therefore, the last layers of the network consist of convolutions
decreasing in size progressively. On the resulting feature maps, a final 3 ◊ 3 convo-
lution is applied to generate box predictions on the corresponding grid. As visualized
in Figure 20, the original SSD approach used six di�erent scales with overall 8732 box
predictions.

300

300

3

VGG-16
through Conv5_3 layer

19

19

Conv7
(FC7)

1024

10

10

Conv8_2

512

5

5

Conv9_2

256

3

Conv10_2

256 256

38

38

Conv4_3

3

1

Image

Conv: 1x1x1024 Conv: 1x1x256
Conv: 3x3x512-s2

Conv: 1x1x128
Conv: 3x3x256-s2

Conv: 1x1x128
Conv: 3x3x256-s1

D
et

ec
tio

ns
:8

73
2

pe
r
C

la
ss

Classifier : Conv: 3x3x(4x(Classes+4))

512

N
on

-M
ax

im
um

 S
up

pr
es

si
on

Conv11_2

74.3mAP
59FPS

Classifier : Conv: 3x3x(6x(Classes+4))

19

19

Conv6
(FC6)

1024

Conv: 3x3x1024

S
S

D

Extra Feature Layers

Conv: 1x1x128
Conv: 3x3x256-s1

Conv: 3x3x(4x(Classes+4))

Figure 20: The architecture of Single Shot Multibox Detector consists of a base network
that is responsible for extracting the features (in this case the VGGNet [80],
but could also be the GoogleNet or similar). On this, multiple, progressively
decreasing convolutions are applied. Each of these resulting feature maps is
used as a grid to predict boxes on [56].

26

2. Foundations

In conclusion, SSD is more accurate than YOLO, especially for objects with strongly
varying shape sizes. However, SSD also contains more layers and, hence, is more complex.
Multi-stage approaches like Faster R-CNN su�er under their slow evaluation time. This
is why for real-time detection, mostly YOLO or SSD are used [68].

2.4.3. Datasets

State of the art results on semantic segmentation and bounding box detection are mostly
achieved by supervised learning. Therefore, datasets with examples and corresponding
label sets have to be generated. In the context of autonomous driving, images of typical
street scenarios can be easily recorded, as it is su�cient to have a camera taking pictures
during a drive. However, labels for semantic segmentation or object detection often need
to be created by a human because they have to be accurate to achieve the best learning
performance of neural networks. Hence, large datasets are expensive and can rarely be
automated.

Nevertheless, deep neural networks require large-scale datasets to develop their full
potential [12]. This is why there are well-known, publicly available datasets that provide
many training examples and benchmarks to test the neural network’s performance on.
As this thesis also relies on such datasets, the next paragraphs introduce some of the
most popular in the autonomous car context.
KITTI The KITTI (Karlsruhe Institute of Technology and Toyota Technological In-

stitute) dataset [22] was released in 2012 and contains data for stereo, optical
flow, visual odometry/SLAM and 3D object detection. The dataset was captured
by driving around in rural areas and highways in Karlsruhe. Over six hours of
tra�c scenarios were recorded with several sensors like color and grayscale stereo
cameras, a Velodyne 3D laser scanner and a high-precision GPS system. The 3D
object detection challenge includes 7481 training and 7518 test images annotated
by a special labeling tool. The task is separated into the detection of vehicles,
pedestrians and cyclists as those are the most crucial objects for autonomous driv-
ing [39]. Figure 21 shows an example for the 3D object detection challenge.
However, KITTI is limited to a single street section where all sequences were
recorded, hence lacking of diversity. Besides, there exist no o�cial pixel-wise anno-
tations for KITTI, so that it is less practical for the task of semantic segmentation.

Figure 21: Visualization of 3d bounding boxes in KITTI [22]. Every object is approx-
imated by a box with three shape dimensions and an additional orientation
parameter.

27

2. Foundations

Cityscapes The Cityscapes dataset [12] provides pixel-level and instance-level semantic
labels of complex urban street scenes. The images were recorded in 50 di�erent
cities constituting a diverse set of examples with a resolution of 2048◊1024 pixels.
Overall, the dataset distinguishes between 30 di�erent classes on 3475 fine anno-
tated images for training and validation and 1525 test images. Also, 20,000 images
have coarse annotations where only a part of the image is labeled. Especially the
object boundaries are less accurate, but the annotation process is more than 10
times faster so that more labels can be created at the same time. In comparison
to other datasets, Cityscapes has a high annotation quality and richness while
covering more complex scenarios than, i.e. KITTI [12]. Examples of the dataset
are shown in Figure 22.

(a) Fine annotation (Zurich) (b) Coarse annotation (Bamberg)

Figure 22: Example images with overlaying color-coded labels from Cityscapes. Cars are
visualized in blue, pedestrians in red and pixels without a label are shown in
black [12].

Mapillary Vistas An even larger dataset of street-level images constitutes Mapillary
Vistas [62] which was published in 2017. 25,000 tra�c scenes from all over the
world are annotated into 66 object categories with instance-specific labels for 37
classes. The dataset includes a wide variety of weather conditions and daytimes as
well as di�erent imaging devices and perspectives. Therefore, the image resolution
also di�ers with an average of about 9 megapixels. To create the Mapillary dataset,
a similar quality assurance pipeline like Cityscapes was applied so that the accuracy
of the images is similar high. Figure 23 summarizes some examples from this
dataset.

28

2. Foundations

Figure 23: Annotated images from Mapillary Vistas. The labels are more detailed con-
taining lane markings and di�erent kind of grounds like snow, and recorded
from various perspectives compared to Cityscapes. The same color encond-
ings like in Figure 22 are used to visualize the labels [62].

2.5. Related work
The following section briefly introduces related work which was taken into account for
this project. First, the second version of YOLO, called YOLO9000, is discussed with
a focus on the hierarchical classification. The second work proposes an architecture for
training a CNN on multiple heterogeneous datasets for the task of semantic segmentation
while hierarchically classifying certain objects.

2.5.1. YOLO9000

Common object detectors like YOLO [70] or SSD [56] are mostly limited to detect less
than 50 di�erent categories [18, 54]. However, [68] proposes to extend the YOLO ar-
chitecture recognizing over 9000 di�erent object categories. The key concept of their
approach is a hierarchical classification with which YOLO can be trained on detection
and classification datasets simultaneously.

First of all, when training a network with multiple, di�erent datasets, the labels need
to be matched. For the detection task, the well-known dataset MSCOCO (Microsoft
Common Objects in Context) [54] is selected containing up to 91 di�erent object types
in 328k images. The ImageNet dataset with its 1,000 classes provides the classification
images whereas the labels are based on the WordNet which is a language database struc-
turing concepts and illustrating relations between them [75]. The problem of combining
both datasets is that MSCOCO has, i.e. the class label “dog” while ImageNet distin-
guishes between 147 di�erent dog species. To still train on both datasets, the labels can
be structured as a tree or hierarchy based on WordNet with “physical object” as the
root node. However, WordNet is not a tree but a directed graph. Therefore, one leaf
might be reached by multiple paths from the root node. To convert WordNet to a tree,
[68] proposes only to choose the shortest path and remove the others from the graph.
Figure 24 visualizes the resulting label hierarchy.

29

2. Foundations

animal artifact natural object phenomenon

plant fungusvehicle equipment
cat dog fish

tabby Persian

ground water air

airplanecar

biplane jet airbus stealth
fighter

houseplant

vascular
plant

physical object WordTree

golden
fern

potato
fern

felt
fern

sea
lavender

American
twinflower

Figure 24: The combined label hierarchy of ImageNet and MSCOCO is based on Word-
Net. The Figure shows a simplified tree where blue nodes are classes from
MSCOCO, red ones from ImageNet, and black nodes are additional classes
within the hierarchy sticking the label sets together. Overall, the tree contains
1369 nodes [68].

After specifying the label set, the question remains how to train a network on such
a hierarchy. Using a softmax for classification assumes that the classes are mutually
exclusive [27, 68], but a hierarchy includes parent-child relations like car and ground
vehicle. Therefore, a multi-label model is used where more than one class can be correct
at the same time. Furthermore, as neighbor classes with the same ancestor node are
yet mutually exclusive, the softmax function can be applied on class subsets shown in
Figure 25. Hence, a label consists of multiple classes. For example, if an object is a
car, the ground truth is 1 for the class car and all its ancestor, while all direct neighbor
nodes have the label 0. Other classes like “dog” whose ancestor is not included in the
path from the correct class to the root node, are ignored.

...
kit fox

English setter

Siberian husky

Australian terrier

English springer

grey whale

lesser panda

Egyptian cat

ibex
Persian cat

cougar

rubber eraser

stole
carbonara

softmax

WordTree1k

Imagenet 1k

986

(a) Plain ImageNet class vector

Australian terrier

...
thing

matter

object

phenomenon

body part

body of water

head
hair

vein
mouth

ocean
cloud

snow
wave

softmax
softmax softmax

softmax
softmax

WordTree1k

1355

(b) Hierarchical WordNet class vector

Figure 25: (a) The 1000 classes from ImageNet are mutually exclusive, so that a softmax
can be applied over all classes. (b) The hierarchical classification on WordNet
has subclasses and relations between categories. Therefore, a multi-label
structure is introduced with a softmax over those classes having the same
ancestor [68].

Using the concept of partially applied softmax, only the conditional probabilities are
learned by the network like Pr (car | ground vehicle). To determine the absolute proba-

30

2. Foundations

bility of a certain class, all probabilities of nodes on the path from the root to the class
are multiplied resulting in the following equation for car :

Pr (car) =Pr (car | ground vehicle)
· Pr (ground vehicle | vehicle)
· Pr (vehicle | artifact)
· Pr (artifact | physical object)

(2.9)

The ImageNet dataset only provides classification labels that are not su�cient for
training a bounding box detector. However, as MSCOCO already contains object lo-
cation labels for 91 classes, [68] proposes to solely train the classifier part of YOLO
on ImageNet. Therefore, if an image with a single classification label is given during
training, the box having the highest probability for the class label is selected and used
to compute the classification loss. The regression loss for the box shape is ignored, as
no information about the object location is provided. Hence, YOLO learns to locate
objects by MSCOCO, but improves its classifier on ImageNet examples.

In experiments, the label hierarchy was even extended to over 9000 classes using the
full ImageNet release with more than 14 million images. Evaluating YOLO9000 on
the ImageNet detection task, the network performed well learning new species of ani-
mals but struggles with objects of categories which are not included in MSCOCO and,
thus, lacking of location information. This is why items of clothing like “sunglasses” or
“swimming trunks” are very poorly detected with an accuracy of 0.0%, whereas YOLO
achieves over 61% on “armadillo” and “tiger” although it has not seen any bounding
boxes for those classes.

2.5.2. Training of Convolutional Networks on Multiple Heterogeneous Datasets
for Street Scene Semantic Segmentation

Recently, a new approach for hierarchical classification of semantic segmentation was
published by [58]. The focus of this work is to train a CNN on multiple, heterogeneous
datasets that have di�erent label policies. One of the greatest challenge arising from
the combination of, i.e. Cityscapes [12] and Mapillary Vistas [62] is that each dataset
has di�erent detailed semantic labels causing a conflict of supervision. For example,
the road class in Cityscapes includes lane markings and bike lanes that are separated in
extra classes in Mapillary Vistas. Also, the rider class is split up into bicyclist, motor-
cyclist and other riders. To still train on the detailed labels, a hierarchical approach is
introduced.

Figure 26 shows the label hierarchy of [58]. Besides Cityscapes and Mapillary Vis-
tas, the German Tra�c Sign Detection Benchmark (GTSDB) [86] is used to get more
detailed information of tra�c signs. However, this dataset only contains bounding box

31

2. Foundations

ba
ck

fr
on

t

ro
ad

rid
er

eg
o

ve
hi

cl
e

ra
il

tra
ck

bu
ild

in
g

w
al

l
fe

nc
e

gu
ar

d
ra

il
br

id
ge

si
de

w
al

k

tu
nn

el

dr
iv

ab
le

t.
lig

ht
bi

cy
cl

e
sk

y
pe

rs
on

ve
ge

ta
tio

n
m

ot
or

cy
cl

e
po

le ca
r

tru
ck bu
s

ca
ra

va
n

tra
ile

r
on

 ra
ils

te
rr

ai
n

pa
rk

in
g

t.
si

gn
bo

at
cu

rb
ba

rr
ie

r

bi
ke

 la
ne

cr
os

s.
-p

la
in

cu
rb

 c
ut

pe
d.

 a
re

a
bi

rd

se
rv

ic
e

la
ne

tra
sh

 c
an

an
im

al

cr
os

sw
al

k
la

ne
 m

ar
ki

ng

m
ou

nt
ai

n
sa

nd
sn

ow
te

rr
ai

n
w

at
er

ba
nn

er
be

nc
h

bi
ke

 ra
ck

bi
llb

oa
rd

ca
tc

h
ba

si
n

cc
tv

 c
am

er
a

fir
e

hy
dr

an
t

ju
nc

tio
n

bo
x

m
ai

lb
ox

m
an

ho
le

ph
on

e
bo

ot
h

po
th

ol
e

st
re

et
 li

gh
t

t.
si

gn
 fr

am
e

ut
ili

ty
 p

ol
e

ot
he

r v
eh

ic
le

w
he

el
ed

 s
lo

w

ca
r m

ou
nt

Cityscapes classes
Mapillary Vistas classes

GTSDB classes

PER-PIXEL ANNOTATED

BOUNDING BOX ANNOTATED

lim
it

20
lim

it
30

lim
it

50
lim

it
60

lim
it

70
lim

it
80

re
st

r.
en

ds
 8

0
lim

it
10

0
lim

it
12

0
no

 o
vr

tk
in

g
no

 o
vr

tk
in

g
t.

pr
io

rit
y

ne
xt

 in
te

r
pr

io
rit

y
ro

ad
gi

ve
 a

w
ay

st
op

no
 tr

af
fic

 b
ot

h
no

 tr
uc

ks
no

 e
nt

ry
da

ng
er

be
nd

 le
ft

be
nd

 ri
gh

t

un
ev

en
 ro

ad
sl

ip
pe

ry
 ro

ad
ro

ad
 n

ar
ro

w
s

co
ns

tru
ct

io
n

tra
ffi

c
si

gn
al

pe
d.

 c
ro

ss
in

g
sc

ho
ol

 c
ro

ss
in

g
cy

cl
es

 c
ro

ss
in

g
sn

ow
an

im
al

s
re

st
ric

tio
n

en
ds

go
 ri

gh
t

go
 le

ft
go

 s
tra

ig
ht

go
 le

ft
st

ra
ig

ht

ke
ep

 le
ft

re
st

r e
nd

 o
ve

r.
re

st
r.

en
d

ov
er

. t
.

go
 ri

gh
t s

tra
ig

ht

ke
ep

 ri
gh

t

ro
un

da
bo

ut

be
nd

ot
he

r r
id

er

bi
cy

cl
is

t
m

ot
or

cy
cl

is
t

root

Fig. 2. Three-level semantic label hierarchy combining 108 classes from Cityscapes, Mapillary Vistas and GTSDB dataset. Classes marked in black
correspond to the L1, L2, and L3 classifiers of Fig. 1.

children labels of a node and the whole tree of classifiers is
trained, in an end-to-end, fully convolutional manner, over a
shared feature representation.

B. Convolutional network architecture

The proposed network architecture (see Fig. 1 for an
example) consists of a fully convolutional feature extractor
for computing a dense, shared representation, and a set of
classifiers, each corresponding to an inner class node of the
semantic hierarchy. Every classifier can be connected with
classifiers one level down in the hierarchy, in order to pass
its predictions for inference, and annotation type independent
training, as described in Sec. III-C, III-D. Each classifier may
be preceded by a shallow adaptation network, which adapts
the common representation, its depth, and receptive field to
the needs of the classifier. This gives the network designer
the opportunity to select different features dimensions and
receptive fields for each of the classifiers. For example,
discriminating between e.g. traffic signs is easier [12], as less
features are needed, compared to high-level discrimination,
like road vs. sidewalk and bushes vs. trees [3]. The flexibility
of applying a different field-of-views to different classifiers,
enables more or less context aggregation, depending on
the classifier’s object average size: e.g. traffic signs appear
generally in smaller scales than buildings or cars.

C. Inference: hierarchical decision rule

During prediction, every pixel of an image receives labels
from classifiers residing on a path from the root classifier to
a leaf classifier of the tree. This strategy, results in a multi-
label prediction with possibly different depth for each pixel.
We use conventional softmax classifiers, which output a per-
pixel normalized class probability vector �j,p for each pixel
p and classifier j. The decision rule for each classifier assigns
to each pixel the most probable class, from the complete set

of classes Cj = {cj
0, ..., c

j
n�1}, as: ŷj,p = argmaxi �j,p

i ,
where ŷj,p � Cj .

D. Training: hierarchical classification loss
The annotations type of many datasets are not compatible

with the required per-pixel supervision for semantic segmen-
tation, as outlined in Sec. II. Our proposed method treats
incompatible annotations with a unified approach, without
the need of external components, as in [6], [7], and with
negligible computational load to the system. The flexibility
for handling diverse ground truth, is exchanged with the only
constraint that classes on the root classifier, should have per-
pixel annotated examples. Annotations for any other level
can be of any type or even mixed.

We propose a hierarchical classification loss, which sepa-
rates supervision according to annotations type at the pixel
level. Each classifier j is trained on all labeled pixels P j =
P j

1 + P j
2 that correspond to its respective node in the label

hierarchy. Pixels P j
1 with per-pixel annotations are trained

using the standard one-hot cross-entropy loss. Pixels P j
2 with

non-per-pixel annotations are trained with generated per-
pixel ground truth using a modified cross-entropy loss. To
achieve this, our method uses the online, per-pixel decisions
of the parent classifier during training, to refine the pseudo,
per-pixel labels. The process is illustrated in Fig. 3. First,
non-compatible annotations are converted to per-pixel pseudo
ground truth. Then, in every training step, decisions of parent
classifiers are intersected with this pseudo ground truth to
generate the per-pixel ground truth used for supervision.

Both losses are accumulated per classifier to the so called
hierarchical loss:

Lj = � 1���P j
1

���

�

p�P j
1

log �j,p
yj,p � 1���P j

2

���

�

p�P j
2

log �j,p
yj,p , (1)

where |·| is the cardinality of the pixel’s set, and yj,p � Cj

Figure 26: The label hierarchy of Cityscapes, Mapillary Vistas and GTSDB consists of
108 classes structured in 5 subsets with a maximum depth of 3. Classes that
are marked black constitute an ancestor for all its subclasses [58].

annotations although the network is trained on pixel-level. To still use both label types,
the bounding boxes are converted to semantic by annotating all pixels inside a box with
the corresponding class and masking them out by the prediction of higher-level labels
(in this case “tra�c sign front”).

After specifying the label hierarchy as an approach for combining multiple datasets,
the overall network architecture can be introduced. The input image is processed by
a single fully convolutional feature extractor based on the ResNet [32] for computing a
dense representation like most other networks for semantic segmentation. As proposed
in YOLO9000, the hierarchy can be interpreted as a multi-label classification over all
subsets. For this approach, not only the softmax is partially applied, but di�erent de-
convolution networks are used for each class subset adapted to the specific task. Thus,
the classifier for the first stage has a much more complex architecture compared to the
one of the tra�c sign subclasses “front” and “back”. For the hierarchy of Figure 26, 5
subnetworks are applied resulting in the overall architecture visualized in Figure 27.

In experiments, all input images are downscaled to a resolution of 520 ◊ 706 to in-
crease the batch size to 4. As the amount of examples is strongly imbalanced across
datasets, every batch contains one image from Cityscapes, one from GTSDB and two
from Mapillary Vistas. The hierarchical approach is compared to a standard classifier
that is trained and evaluated on all three datasets independently. Overall, the proposed
architecture clearly outperforms the flat version proving the advantage of the hierarchical
classification for combined heterogeneous datasets.

32

2. Foundations

Training of Convolutional Networks on Multiple Heterogeneous
Datasets for Street Scene Semantic Segmentation

Panagiotis Meletis and Gijs Dubbelman

Abstract— We propose a convolutional network with hier-
archical classifiers for per-pixel semantic segmentation, which
is able to be trained on multiple, heterogeneous datasets and
exploit their semantic hierarchy. Our network is the first to
be simultaneously trained on three different datasets from
the intelligent vehicles domain, i.e. Cityscapes, GTSDB and
Mapillary Vistas, and is able to handle different semantic level-
of-detail, class imbalances, and different annotation types, i.e.
dense per-pixel and sparse bounding-box labels. We assess
our hierarchical approach, by comparing against flat, non-
hierarchical classifiers and we show improvements in mean
pixel accuracy of 13.0% for Cityscapes classes and 2.4% for
Vistas classes and 32.3% for GTSDB classes. Our implementa-
tion achieves inference rates of 17 fps at a resolution of 520 x
706 for 108 classes running on a GPU.

I. INTRODUCTION

Semantic classification is a key task in the perception
sub-system of an autonomously driving vehicle [1]. The
segmentation task, posed as per-pixel classification, has seen
great progress in the past years [2] due to deep learning
techniques. However, two critical challenges that still need
to be addressed are: 1) to utilize as much and diverse
training data as possible, and 2) to increase the number of
recognizable classes from a few dozens to virtually anything
that a scene can contain.

In this work, we take steps towards solving both chal-
lenges and we present a method that leverages multiple
heterogeneous datasets, i.e. datasets with different classes
and annotation types, to train a fully convolutional network
for per-pixel semantic segmentation. This approach facilitates
better use of available datasets, thereby reducing annotation
effort, and increases the number of classes that can be
recognized. The datasets that we are using in the context
of Highly Automated Driving (HAD) are Cityscapes [3],
Mapillary Vistas [4], and GTSDB [5].

The first challenge, i.e. training for semantic segmentation
with diverse annotations, is tackled in previous works [6], [7]
by external components to the network, in order to generate
pseudo per-pixel ground truth. Our method, in contrast, is
self-inclusive and uses the networks’ own outputs to refine
non-compatible, diverse annotations for supervision.

The second challenge, i.e. to increase the number of
recognizable classes, can be accomplished in two ways:
1) continue per-pixel annotating an existing dataset with
the extra (sub)classes, e.g. [8], or 2) use existing auxiliary
datasets only for the new (sub)classes. The first approach can

Panagiotis Meletis and Gijs Dubbelman are with the Department of Elec-
trical Engineering, Eindhoven University of Technology, Eindhoven, The
Netherlands p.c.meletis@tue.nl, g.dubbelman@tue.nl

Shared Fully Convolutional Feature Extractor

L3
 tr

af
fic

 si
gn

fro
nt

 cl
as

sif
ie

r

L1
 cl

as
sif

ie
r

L2
 ri

de
r

cla
ss

ifi
er

L2
 tr

af
fic

 si
gn

cla
ss

ifi
er

L2
 d

riv
re

ab
le

cla
ss

ifi
er

ad
ap

t.
su

bn
et

ad
ap

t.
su

bn
et

ad
ap

t.
su

bn
et

ad
ap

t.
su

bn
et

ad
ap

t.
su

bn
et

Fig. 1. Our hierarchical classification convolutional network during
inference. The input image is transformed to a shared feature represen-
tation, which is connected to a hierarchy of classifiers though adaptation
subnetworks. The Level-1 classifier outputs predictions for every pixel of
the image, while each subsequent classifier infers only about its own set of
classes. The output of all levels is combined to form the final fine-grained
per-pixel segmentation.

be very costly for big datasets and mainly unnecessary, as a
plethora of datasets with fine-grained (sub)classes exist (e.g.
traffic sign types, car models, pedestrians). In our work, we
research the second approach. For this, the heterogeneity, i.e.
different label spaces and annotations types, of datasets poses
challenges for combining them with traditional “flat”, i.e.
non-hierarchical, classifiers. Therefore, we propose the use
of hierarchical classifiers, which explicitly take advantage
of the semantic relationships between the datasets, and we
compare against flat classifiers. Our hierarchy is comparable
to [9], [10], but differs in the scalability it offers.

In Sec. II, we describe the exact challenges that are
addressed by our hierarchical approach. An example is
combined training on Cityscapes and GTSDB. In that case,
all classes of GTSDB are subclasses of the traffic sign class
in Cityscapes. The straightforward approach of combining
classes from both datasets in a conventional flat classifier
is infeasible, since a traffic sign pixel cannot have different
labels depending on the dataset it comes from. This poses

ar
X

iv
:1

80
3.

05
67

5v
1

 [c
s.C

V
]

15
 M

ar
 2

01
8

Figure 27: The network architecture consists of a shared feature extractor that trans-
forms the input image to a compressed representation. Based on this, one
deconvolution network is applied for each sub-classification for which the ar-
chitecture is adapted. Finally, the outputs of all networks are combined to
get the final pixel-wise segmentation [58].

33

3. Hierarchical Object Detection

3. Hierarchical Object Detection
This section discusses the methods and contributions of this thesis. First, the hierarchical
classification is introduced and delimited from other literature. Furthermore, a concept
for adding object attributes to the classifier is presented. Next, the techniques for
improving the performance of rare classes is discussed focusing on variations of the loss
function. The third part deals with the evaluation metric for which standard classifier
metric are reviewed before addressing the adaptations for hierarchical classification.
Moreover, training on such metrics is examined in the following sub-section concentrating
on the Intersection over Union (IoU) for tree-based hierarchies. Finally, the calculation
of the thresholds for uncertain predictions is discussed.

3.1. Hierarchical classification
Most research in the fields of machine learning and pattern recognition has focused
on flat classification where no class taxonomy is considered [78]. However, many real-
world classifications are naturally based on a hierarchical structure organizing the classes
as a tree or a Directed Acyclic Graph (DAG). To introduce the combination of real-
world class taxonomy and machine learning classifiers, the first part of this section
clarifies the definition of a hierarchical label structure. Next, the task of hierarchical
classification and the di�erent variations that are used in common application domains
are discussed. The third subsection addresses a novel approach for adding class attributes
to the hierarchy. Finally, example label hierarchies for the context of autonomous driving
are presented.

3.1.1. Class taxonomy

Today’s state-of-the-art classifiers for semantic segmentation and bounding box detec-
tion are mostly based on a flat, multi-class classification, where one out of a set of classes
is chosen for each data point [21, 39]. The underlying method often is a softmax applied
on the final outputs of a neural network and selecting the class with the greatest score.
However, the softmax requires that all classes are mutually exclusive as every class is
compared to all others [27, 68]. In real-world problems like analyzing tra�c scenarios,
this might not always be the case. For example, consider the classes of Cityscapes [12]
which include pedestrians, cars, buses and more. To obey all tra�c rules, special vehicles
like an American school bus must also be recognized. However, a school bus also belongs
to the class bus, so that adding this class leads to a non-mutually exclusive class set.
To handle this conflict, the classes can be organized in a hierarchy, as shown in Figure 28.

A hierarchy consists of a root node to which all classes belong. The relationship be-
tween the classes can be expressed by a is-a relationship formally represented by ª. For
example, the relation between bus and schoolbus can be expressed by schoolbus ª bus.
If a data point is classified as a certain subclass, it automatically belongs to all ances-
tors of the class as well. Therefore, a prediction consists of a path through the hierarchy

34

3. Hierarchical Object Detection
Hierarchical classification

Hierarchical multi-label object detection of rare classes for autonomous driving | Phillip Lippe | RD/AFU | 15.05.2018 3

...
CarRider Truck BusPerson Bicycle Schoolbus

Obstacle

Vulnerable Road User Vehicle

PassengercarLarge Vehicle
Person Rider

… … … …

Figure 28: Most multi-class classifications are done in a One-Against-All scheme compar-
ing each class against all others. If those classes are not mutually exclusive,
like bus and schoolbus, a hierarchy can be used to organize the classes. On
each level, one class is selected leading the path to the final prediction. To
predict the class schoolbus, the classifier has to choose vehicle, large vehicle
and so on until reaching the leaf schoolbus.

instead of a single class. The number of edges between the root node and a class is
defined as the depth of the class. The hierarchy can be organized in levels that include
all classes with the same depth [78]. In Figure 28, large vehicle and passengercar belong
to the same level with a depth of 2, but also person and rider are assigned to this level.

Before discussing how a classifier operates on such a class structure, the hierarchy
should be formally specified. Thus, a class taxonomy C must fulfill the following condi-
tions to be called a hierarchy [78]:

1. There is only one greatest element CR, called the root

2. Asymmetric: ’ci, cj œ C, if ci ª cj then cj ”ª ci

3. Anti-reflexive: ’ci œ C, ci ”ª ci

4. Transitive: ’ci, cj, ck œ C, ci ª cj and cj ª ck implies ci ª ck

The asymmetric property ensures that two classes can not be each others ancestor leading
to a circle in the hierarchy. Moreover, as a class should also not be the parent of itself,
the taxonomy is anti-reflexive. Transitivity fulfills the definition by cascading the is-a
relationship throughout levels. However, two di�erent variations of hierarchies can be
further distinguished: a tree and a Directed Acyclic Graph (DAG). In a tree, there exists
exactly one, unique path from the root node to every class (see Figure 29a). The DAG,
on the other hand, allows multiple paths to the same node, even with di�erent lengths
(see Figure 29b). Hence, a class can have more than one direct ancestor at the same
time. For example, an amphibious vehicle can be assigned to the ancestor boat as well

35

3. Hierarchical Object Detection

as ground vehicle. To separate a tree from the more general DAG, the conditions above
can be extended by:

5. ’ci, cj, ck œ C, if ci ª cj and ci ª ck then cj ª ck or ck ª cj

A DAG with more than one direct ancestor for at least one node, as e.g. in Figure 29b,
does not meet this requirement, because both I ª F and I ª C are true, but neither
F ª C nor C ª F apply.

A

B C D

E F G

H I

J K

(a) Tree-based hierarchy

A

B C D

E F G

H I

J K

(b) Directed Acyclic Graph

Figure 29: (a) Hierarchies are often organized as a tree where only one path from the root
node to each class exist. The is-a relations between two subsequent classes
are visualized by directed connections. (b) A DAG extends the definition of
a tree by allowing multiple parents for a node. Hence, the class I belongs to
F and B, but also to C. The additional connections compared to 29a are
highlighted in blue.

Whether a tree or a DAG organizes the classes is determined by the complexity of
the underlying problem. Most literature focuses on tree-based hierarchies [19, 58, 68] as
these constitute an easier task than classifying in a DAG [78]. As this thesis examines
novel methods for applying hierarchical classification on object detection for autonomous
driving, the task is limited to solely considering tree taxonomies. Most of the techniques
can also be used or adjusted for DAGs, but exceed the scope of the thesis. The hierar-
chies developed for the context of autonomous driving are presented in Section 3.1.4.

3.1.2. Multi-class classification on hierarchical structure

Besides the class structure, there are also di�erent methods for performing classification
in a hierarchy that need to be reviewed. Firstly, the classification can be implemented
that either the selected category always is a leaf-node, or it can stop at any node of
the hierarchy [78, 87]. Using the second approach has the benefit that the uncertainty
of the network is considered for the class prediction so that for new, unknown objects
the classifier can still select the correct class on shallower levels. For example, if the
classifier is trained on recognizing cars, buses and trucks, an image of an excavator will

36

3. Hierarchical Object Detection

still lead to high confidence of the ancestor vehicle, but may not choose a leaf class as
none of those fit.

The second aspect for developing a classifier for a hierarchical task is how the structure
is explored. Most literature [8, 44, 78, 87] distinguishes between the flat classifier ignoring
the class relationships, the local (or top-down) classifier employing a set of classifiers,
and the global (or big-bang) approach capturing the class structure in a single classifier.
As selecting the best method is a fundamental part for the design of the classifier and
significantly influences the performance, the three variations should be discussed in more
detail visualized in Figure 30.

Flat classifier The flat classifier behaves like a traditional classification algorithm com-
pletely ignoring the hierarchical structure. Typically, the classifier only predicts
leaf classes from which all its ancestors might be derived. The concept is visualized
in Figure 30a. However, this simple approach has some drawbacks. A flat classifier
does not explore any information about the class relationships. Furthermore, it
is incapable of handling predictions for inner nodes of the hierarchy as only leaf
nodes could be selected.

Local classifier Local classifiers are based on a divide-and-conquer approach. The sys-
tem starts with predicting its highest level class. At the second level, another class
has to be selected, but the choices are narrowed by the previously predicted class.
The procedure continues recursively until either the prediction ends up in a leaf
class or the classifier stops at an inner node due to, e.g. too low confidence. For
each of these steps, a single classifier is required having a local information per-
spective. There are several ways how to apply a local classifier. The most popular
according to Silla and Freitas [78] are:

Per node The local classifier per node applies a binary classifier for each node of
the class hierarchy (see Figure 30b). There are several methods of selecting
positive and negative examples for training as well as how to combine the
predictions for a class prediction during inference. A widely used and intuitive
approach is to train a classifier to be true if the label is the node’s class itself
or any of its ancestors. The prediction for unknown inputs is determined by
following the path of the classifiers with the highest scores. Alternatively,
the child classes can be ignored for training or even included in the negative
examples. For testing, other methods have to be used. For example, positive
predictions can be propagated upward so that a leaf class with a positive score
overrules the negative predictions of all its ancestors. However, as all classes
belong to an independent classifier, the class predictions might be inconsistent
across di�erent levels.

Per parent node Instead of using a binary classifier for each node, the local clas-
sifier per parent node subsumes siblings into a multi-class classifier so that
only parent nodes are assigned to an own classifier (see Figure 30c). During

37

3. Hierarchical Object Detection

A survey of hierarchical classification 37

Fig. 3 Flat classification approach using a flat multi-class classification algorithm to always predict the
leaf nodes

is misleading as they are referring to this naïve flat classification algorithm, and the
term global classifier is often used to refer to the “big-bang” approach (Sect. 5).

In Barbedo and Lopes (2007) the authors refer to this approach as a “bottom-up”
approach. They justify this term as follows: “The signal is firstly classified according
to the basic genres, and the corresponding upper classes are consequences of this first
classification (bottom-up approach).” In this paper, however, we prefer to use the term
flat classification to be consistent with the majority of the literature.

Considering the different types of class taxonomies (tree or DAG), this approach
can cope with both of them as long as the problem is a mandatory-leaf node pre-
diction problem, as it is incapable of handling non-mandatory leaf node prediction
problems. In this approach training and testing proceed in the same way as in standard
(non-hierarchical) classification algorithms.

4 Local classifier approaches

In the seminal work of Koller and Sahami (1997), the first type of local classifier
approach (also known as top-down approach in the literature) was proposed. From
this work onwards, many different authors used augmented versions of this approach
to deal with hierarchical classification problems. However, the important aspect here
is not that the approach is top-down (as it is commonly called), but rather that the hier-
archy is taken into account by using a local information perspective. The idea behind
this reasoning is that in the literature there are several papers that employ this local
information in different ways. These approaches, therefore, can be grouped based on
how they use this local information and how they build their classifiers around it. More
precisely, there seems to exist three standard ways of using the local information: a
local classifier per node (LCN), a local classifier per parent node (LCPN) and a local
classifier per level (LCL). In the following subsections we discuss each one of them in
detail. Also note that unless specified otherwise, the discussion will assume a single
label tree-structured class hierarchy and mandatory leaf node prediction.

123

(a) Flat classifier

38 C. N. Silla Jr., A. A. Freitas

It should be noted that, although the three types of local hierarchical classification
algorithms discussed in the next three sub-sections differ significantly in their training
phase, they share a very similar top-down approach in their testing phase. In essence, in
this top-down approach, for each new example in the test set, the system first predicts
its first-level (most generic) class, then it uses that predicted class to narrow the choices
of classes to be predicted at the second level (the only valid candidate second-level
classes are the children of the class predicted at the first level), and so on, recursively,
until the most specific prediction is made.

As a result, a disadvantage of the top-down class-prediction approach (which is
shared by all the three types of local classifiers discussed next) is that an error at a
certain class level is going to be propagated downwards the hierarchy, unless some
procedure for avoiding this problem is used. If the problem is non-mandatory leaf
node prediction, a blocking approach (where an example is passed down to the next
lower level only if the confidence on the prediction at the current level is greater than a
threshold) can avoid that misclassifications are propagated downwards, at the expense
of providing the user with less specific (less useful) class predictions. Some authors use
methods to give better estimates of class probabilities, like shrinkage (McCallum et al.
1998) and isotonic smoothing (Punera and Ghosh 2008). The issues of non-mandatory
leaf node prediction and blocking are discussed in Sect. 4.4.

4.1 Local classifier per node approach

This is by far the most used approach in the literature. It often appears under the name
of a top-down approach, but as we mentioned earlier, we shall see why this is not a
good name as the top-down approach is essentially a method to avoid inconsistencies
in class predictions at different levels in the class hierarchy. The LCN approach con-
sists of training one binary classifier for each node of the class hierarchy (except the
root node). Figure 4 illustrates this approach.

Fig. 4 Local classifier per node approach (circles represent classes and dashed squares with round corners
represent binary classifiers)

123

(b) Local classifier per node

A survey of hierarchical classification 43

is then combined with a bottom-up training approach, which consists of training the
leaf classifiers using refinement and passing this information to the parent classifiers.

So far we have discussed the LCN approach mainly in the context of a single label
(per level) problem with a tree-structured class hierarchy. In the multi-label hierarchi-
cal classification scenario, this approach is still directly employable, but some more
sophisticated method to cope with the different outputs of the classifiers should be
used. For example, in Esuli et al. (2008) the authors propose the TreeBoost.MH which
uses during training at each classification node the AdaBoost.MH base learner. Their
approach can also (optionally) perform feature selection by using information from
the sibling classes. In the context of a DAG, the LCN approach can still be used in a
natural way as well, as it has been done in Jin et al. (2008) and Otero et al. (2009).

4.2 Local classifier per parent node approach

Another type of local information that can be used, and it is also often referred to
as top-down approach in the literature, is the approach where, for each parent node
in the class hierarchy, a multi-class classifier (or a problem decomposition approach
with binary classifiers like One-Against-One scheme for Binary SVMs) is trained to
distinguish between its child nodes. Figure 5 illustrates this approach.

In order to train the classifiers the “siblings” policy, as well as the “exclusive
siblings” policy, both presented in Sect. 4.1, are suitable to be used.

During the testing phase, this approach is often coupled with the top-down class
prediction approach, but this coupling is not necessarily a must, as new class pre-
diction approaches for this type of local approach could be developed. Consider the
top-down class-prediction approach and the same class tree example of Fig. 5, and
suppose that the first level classifier assigns the example to the class 2. The second
level classifier, which was only trained with the children of the class node 2, in this case

Fig. 5 Local classifier per parent node (circles represent classes and dashed squares with round corners in
parent nodes represent multi-class classifiers—predicting their child classes)

123

(c) Local classifier per parent node

A survey of hierarchical classification 45

4.3 Local classifier per level approach

This is the type of “local” (broadly speaking) classifier approach least used so far on
the literature. The local classifier per level approach consists of training one multi-
class classifier for each level of the class hierarchy. Figure 6 illustrates this approach.
Considering the example of Fig. 6, three classifiers would be trained, one classifier for
each class level, where each classifier would be trained to predict one or more classes
(depending on whether the problem is single-label or multi-label) at its corresponding
class level. The creation of the training sets here is implemented in the same way as
in the local classifier per parent node approach.

This approach has been mentioned as a possible approach by Freitas and de Carvalho
(2007), but to the best of our knowledge its use has been limited as a baseline com-
parison method in Clare and King (2003) and Costa et al. (2007b).

One possible (although very naïve) way of classifying test examples using classifi-
ers trained by this approach is as follows. When a new test example is presented to the
classifier, get the output of all classifiers (one classifier per level) and use this informa-
tion as the final classification. The major drawback of this class-prediction approach
is being prone to class-membership inconsistency. By training different classifiers
for each level of the hierarchy it is possible to have outputs like class 2 at the first
level, class 1.2 at the second level, and class 2.2.1 at the third level, therefore gener-
ating inconsistency. Hence, if this approach is used, it should be complemented by a
post-processing method that tries to correct the prediction inconsistency.

To avoid this problem, one approach that can be used is the class-prediction top-
down approach. In this context, the classification of a new test example would be done
in a top-down fashion (similar to the standard top-down class-prediction approach),
restricting the possible classification output at a given level only to the child nodes
of the class node predicted in the previous level (in the same way as it is done in the
LCPN approach).

Fig. 6 Local classifier per level (circles represent classes and each dashed rectangle with round corners
encloses the classes predicted by a multi-class classifier)

123

(d) Local classifier per level

A survey of hierarchical classification 47

– Restricted voting: This method consists of creating a set of secondary classifiers
that will link a node and its grandparent node. The motivation for this approach is
that, although the threshold reduction method is able to pass more examples to the
classifiers at the lower levels, it is still possible to have examples wrongly rejected
by the high-level subtree classifiers. Therefore, the restricted voting approach gives
the low-level classifiers a chance to access these examples before they are rejected.
This approach is motivated by ensemble-based approaches and the set of second-
ary classifiers are trained with a different training set than the original subtree
classifiers. This method was originally designed for tree-structured class hierar-
chies and extending it to DAG-structured hierarchies would make it considerably
more complex and more computationally expensive, as in a DAG-structured class
hierarchy each node might have multiple parent nodes.

– Extended multiplicative thresholds: This method is a straightforward extension of
the multiplicative threshold proposed by Dumais and Chen (2000) (explained in
Sect. 4.1), which originally only worked for a 2-level hierarchy. The extension
consists simply of establishing thresholds recursively for every two levels.

5 Global classifier (or big-bang) approach

Although the problem of hierarchical classification can be tackled by using the previ-
ously described local approaches, learning a single global model for all classes has the
advantage that the total size of the global classification model is typically considerably
smaller, by comparison with the total size of all the local models learned by any of the
local classifier approaches. In addition, dependencies between different classes with
respect to class membership (e.g. any example belonging to class 2.1 automatically
belongs to class 2) can be taken into account in a natural, straightforward way, and
may even be explicitated (Blockeel et al. 2002). This kind of approach is known as the
big-bang approach, also called “global” learning. Figure 7 illustrates this approach.

Fig. 7 Big-bang classification approach using a classification algorithm that learns a global classification
model about the whole class hierarchy

123

(e) Global classifier

Figure 30: Comparison of the most popular variations of hierarchical classification. Cir-
cles represent classes whereas the context of a classifier is shown by dashed
rectangle [78]. (a) The flat classifier is similar to a standard classifier and
categories a data item into one of the leaf classes. (b) The local classifier per
node approach consists of a binary classifier for each node of the hierarchy.
(c) Using a multi-class classifier to distinguish between child nodes is called
a local classifier per parent node. (d) The third variation of local classifiers
considers nodes with the same depth, or level. The predictions are masked
based on the upper-level selection. (e) A global classifier predicts scores for
every class in a single model evaluation [78].

38

3. Hierarchical Object Detection

inference, the prediction is determined by selecting the child with the highest
score directly beneath the root, and recursively continuing the process for
each of the chosen nodes until ending up in a leaf node. Mostly, the same
classification algorithm is used throughout the hierarchy. One example for
this approach is the work of Meletis and Dubbelman [58] that is presented
in Section 2.5.2. The labels are structured in a hierarchy with four nodes
having one or more descendants besides the root node. For all those nodes,
an independent decoder network is applied to distinguish between the chil-
dren and predict a corresponding semantic segmentation. The encoder part
of the network is shared among the di�erent decoders so that the approach
is a hybrid version of a local classifier per parent node and a global classifier.

Per level The third variation of local classifiers applies a multi-class classifier per
level of the class hierarchy illustrated in Figure 30d. The training and infer-
ence can be done similarly to the local classifier per parent node whereas the
decisions of the previous layers restrict the possible choices of the following
classifier. Otherwise, class relationships are not considered leading to incon-
sistent predictions. For example, if the classifier of the first level selects the
class 1 from the hierarchy of Figure 30d, but the second suggests 2.1, a ho-
mogeneous prediction cannot be given except by a post-processing correction
method. Hence, the approach of a local classifier per level rarely occurs in
literature [78].

Global classifier The global classifier approach, or big-bang approach, uses a single
classifier for the prediction of all nodes of the hierarchy visualized in Figure 30e. A
great benefit of this approach is that it is typically significantly smaller compared
to local classifiers as only one classifier is needed. Furthermore, considering the
entire class hierarchy results in a better understanding of class relationships and,
thus, consistent predictions across levels. The drawbacks of a global classifier are
the lack of modularity, as adding a new class requires retraining of the classifier
and the complex architecture for the single model. One example for the approach
of a global classifier constitutes YOLO9000 [68]. A single neural network evaluates
an image and predicts bounding boxes including the class hierarchy. The method
for obtaining the class prediction from the hierarchical scores is similar to a local
classifier per parent node, but the network subsumes all classifiers in a multi-class
manner.

After reviewing the existing approaches, a suitable method for the task of hierarchical
object detection on images has to be selected. In the context of autonomous driving, the
classifier needs to be executed in real-time analyzing more than 20 frames per second.
Applying multiple, complex neural networks on high-resolution images, as it is required
for local classifier approaches, is not practicable as it needs numerous high-end GPUs
in the autonomous vehicle for solely this task, or a slow, sequential execution. Hence,
this thesis relies on a global classifier approach for which the scores of all nodes are
determined by a single network evaluation. Nevertheless, the local classifier per node

39

3. Hierarchical Object Detection

approach has the benefit of being modular and flexible as all classes are evaluated by
an own binary classifier. Furthermore, the training examples for positive and negative
examples can be picked regardless of other classes. This simplifies handling imbalanced
class distributions as the training can be carefully adjusted to the desired performance.

To combine the global classifier with local classifiers per node, a neural network can be
extended by using binary classifiers for each node of the hierarchy. Therefore, the scores
are still predicted by a single classifier taking the entire class hierarchy into account,
but the inference of the final class prediction is a post-processing step independently of
the network. The disadvantage of the separation of classification and inference is that
the class relationships are not encoded within the classifier. Thus, inconsistencies of
the predictions might occur and must be handled. The simplest method is a top-down
approach similar to the local classifier per parent node that determines the most likely
descendant for the root node and all subsequently selected classes based on the predicted
probabilities. As the network might be uncertain for objects that it has either never seen
or are hard to recognize, a threshold can be specified which the child node’s probability
must exceed to continue the search through the hierarchy. If this is not the case for
any of the descendants, the algorithm stops at the last node that has a threshold higher
than the predefined value. However, handcrafting such thresholds is not intuitive and
can reasonably influence the network’s performance. Determining the thresholds can
also be done automatically but requires a second, independent validation dataset to test
the performance depending on the selected thresholds.

3.1.3. Object attributes

A hierarchical structure describes the relationships between classes. Still, objects can
be further characterized by having attributes like whether the brake lights of a vehicle
are activated or not. Representing attributes with an is-a relationship is not always
practicable especially when multiple classes share the same attribute. For example,
considering the brake lights, the attribute can be assigned to the class vehicle and all
its descendants. Hence, introducing additional nodes for every subclass like truck with
brake lights on significantly increases the size of the hierarchy. Moreover, as the classes
are spread over di�erent levels of the hierarchy, the attribute nodes are compared to the
other descendants although a subclass like truck should be superior as it provides more
specific information about the object, and the attribute can also be assigned at a deeper
level. Very few literature deals with the task of integrating attributes in a hierarchical
class structure. Therefore, a new, more modular approach needs to be developed here.

The neural network relies on a global classifier so that all scores are calculated in a
single evaluation of a multi-class classifier, and the final class prediction is determined
by a post-processing step. As the attributes can also be seen as an additional classi-
fication task, they are added to the class vector of the network like any other node of
the hierarchy and also trained similarly. However, the post-processing part is where the

40

3. Hierarchical Object Detection

special properties of the attributes can be taken into account. When the inference stops
at a leaf class or an inner node, the prediction can further be specified by evaluating
the attributes that belong to the selected class and assign those to the prediction. The
class-attribute relationship is represented by a virtual edge that is ignored during the
class search. In Figure 31, an example of recognizing a school bus with this method is
visualized. In the first part of the inference, the class bus is determined by following
the path of the highest scores towards the leaf class. Next, the single attribute duty de-
scribing the function of a vehicle is evaluated assigning school to the prediction. If more
attributes would belong to bus they would be considered as independent. Furthermore,
the attributes can also be structured in a hierarchy and evaluated like the other classes.

Obstacle

Vehicle

PassengercarLarge Vehicle

BusTruck …

…

Duty

Police Fire MedicalNormal School

Figure 31: Object attributes in a hierarchical class structure are added as an additional
classification task. Multiple classes can share the same attribute leading to
a more e�cient and modular prediction than using additional subclasses for
each combination of node and attribute. Dashed lines represent virtual edges
between classes and attributes, and the selected edges and classes for the
prediction of a school bus are highlighted in blue.

The most significant benefit of this approach is its modularity. Attributes can be added
or removed without alternating the class hierarchy. Moreover, multiple classes can share
the same classifier for an attribute as the features are mostly very similar. Considering
the example of duty in Figure 31, the visual properties of an ambulance or fire truck
are nearly the same for similar cars. Especially for rare classes, modular attributes
significantly increase the number of training examples and simplify the learning process
for the network.

41

3. Hierarchical Object Detection

3.1.4. Label taxonomy for autonomous driving

This section gives an overview of the hierarchies that are used for experiments and de-
veloping methods for detecting rare classes in the context of this thesis. As the detection
system has its application in the field of autonomous driving, the classes in which objects
should be categorized are based on this domain. Multiple public state of the art datasets
have already defined a class structure for urban street scenes, and thus the hierarchies
in this thesis rely on the labels of Cityscapes [12] and Mapillary Vistas [62, 63]. Overall,
three di�erent hierarchies are specified varying in size and complexity. The class struc-
tures are based on object properties that are relevant for autonomous driving, and not
solely on visual similarities. The illustrations of the hierarchies can be viewed in the
Appendix B.

The smallest hierarchy is based on the 19 classes of the Cityscapes dataset on which
the validation is performed. Nine additional inner nodes are added to form a hierarchical
class structure. On the first level, the labels are distinguished between ground, sky and
obstacle. The class sky has no descendants as for example clouds or airplanes are not
relevant for a self-driving vehicle. However, detecting the type of surface like sidewalk,
terrain and road is important to estimate the free space for driving. All kind of objects
are subsumed in the class obstacle having the subclasses vehicle, vulnerable road user,
nature/vegetation and infrastructure. As vehicles have di�erent driving behaviours, they
are further divided into typical passenger cars, large vehicles including buses and trucks,
and ridable vehicles like bicycles and motorcycles. Riders of such vehicles are arranged
as a child class of vulnerable road user, next to pedestrians. The class infrastructure
contains subclasses like building and pole, but also tra�c signs and tra�c lights. The
hierarchy is visualized in Figure 47.

More classes from Cityscapes that are not used for validation are added in a second
hierarchy. The additional classes include caravan and trailer as children of large vehicle,
and the infrastructures bridge, tunnel and guardrail. Furthermore, the hierarchy also
contains some rare classes from Mapillary Vistas like water and trash bin. The class
rider is split into motorcyclist and bicyclist as Mapillary Vistas contains specific labels
for those. When training on an example of Cityscapes, the distinction of motorcyclist
and bicyclist is ignored and only the ancestor rider is involved in the loss calculation.
As the number of di�erent infrastructures increased over 10, they are pre-categorized
by additional inner nodes based on their general shape (vertical, elongated or sign).
Besides, the attribute node duty is introduced that is assigned to most descendants of
vehicle and vulnerable road user. Figure 48 shows the class relationships of all 48 nodes
in detail. This hierarchy states the standard class structure for experiments in Section 4
and for further discussions in this section.

To test the scalability of the hierarchical classifier approach, the classes structure is
extended by about 20 additional classes. For instance, the class road is split into lane
representing the road class from Mapillary Vistas, marking further divided into general

42

3. Hierarchical Object Detection

lane markings and crosswalks, hole with the descendants manhole and pothole, and bike
lane as last subclass. The class curb is added as a subclass of sidewalk to be consistent
to the class definition of Cityscapes. Besides, a new type of infrastructures, called box-
like infrastructure, is created subsuming classes with a rectangular shape like junction
box and bench. Overall, the large-scale hierarchy provides a more detailed distinction of
subclasses but introduces a significant imbalance for the subtree of ground. The class
structure is visualized in Figure 49.

3.2. Optimization on rare classes
Datasets like Cityscapes [12] and Mapillary Vistas [62] are based on real-world road
scenes containing various objects like pedestrians and cars. However, the number of
examples for each class significantly di�er as some object types are more likely to occur
in a scene than others. In the case of semantic labeling, the imbalance is further enhanced
by the number of pixels a class covers in average. Standard machine learning algorithms
assume that the class distribution is roughly uniform [45]. If this is not the case, these
algorithms might fail to represent the distributive characteristic of the dataset adequately
and perform poorly on rare classes [30, 31]. As the hierarchies of Section 3.1.4 contain
several classes that infrequently occur in datasets, this section reviews methods for
dealing with such imbalances. First, the problems of rare classes are discussed more
deeply. The second subsection presents techniques to balance the training examples
for each class individually, whereas performance-based weights determined by moving
average filters are proposed in the last paragraph. Another method for optimizing the
predictions on rare classes is using a metric as a loss function. Due to its complexity, it
is discussed later in Section 3.4.

3.2.1. Dataset distributions

Many practical applications of machine learning deal with imbalanced data like detecting
software defects or cancer gene expressions [30]. Also, the task of environment percep-
tion for autonomous driving encounters the problem of recognizing various rare objects
that infrequently occur at road scenes. For instance, the class distribution of Cityscapes
is highly biased towards flat surfaces like road and obstacles as buildings and vegetation.
To give a more detailed review of the class distribution, Appendix A summarizes each
dataset by an overview of the average number of pixels per class based on the label
hierarchies of Section 3.1.4. Furthermore, the ratio of positive and negative examples
is recorded for each classifier showing the data imbalances within the hierarchy. As the
optimization techniques in this thesis are developed regarding those datasets, a short
discussion about their class distribution is stated here:

Cityscapes Over 65% of typical urban street scenes in Cityscapes are covered by parts
of road, buildings and vegetation. The remaining pixels mainly divide into vehi-
cles, sidewalks and other types of infrastructure. Although the class sky cannot

43

3. Hierarchical Object Detection

be counted as a rare class and occurs on most images, its positive and negative
examples are imbalances as the node is arranged at the first level of the hierarchy.
Regarding vehicles, passenger cars constitute the majority of the examples whereas
both large and ridable vehicles have about eight times fewer examples in average.
Especially classes like caravan and trailer that are ignored during evaluation are
underrepresented in Cityscapes. With an average proportion of less than 0.01%
of all labels has the class guardrail the fewest number of examples. Compared
to the most common class road, it has about 3000 times fewer pixels. The class
distribution is summarized in Figure 32.

flat construction nature vehicle sky object human void
106

108

1010
1 instance-level annotations are available
2 ignored for evaluationro

ad
si

de
w

al
k

pa
rk

in
g2

ra
il

tra
ck

2

bu
ild

.
fe

nc
e

w
al

l
br

id
ge

2

tu
nn

el
2

gu
ar

d
ra

il2

ve
ge

t.

te
rr

ai
n ca

r1

bi
cy

cl
e1

bu
s1

tru
ck

1

tra
in

1

m
ot

or
cy

cl
e1

ca
ra

va
n1

,2

tra
ile

r1
,2

sk
y

po
le

tra
ffi

c
si

gn
tra

ffi
c

lig
ht

po
le

gr
ou

p2

pe
rs

on
1

rid
er

1

st
at

ic
2

gr
ou

nd
2

dy
na

m
ic

2

nu
m

be
ro

fp
ix

el
s

Figure 1. Number of finely annotated pixels (y-axis) per class and their associated categories (x-axis).

tailored for autonomous driving in an urban environment
and involving a much wider range of highly complex inner-
city street scenes that were recorded in 50 different cities.
Cityscapes significantly exceeds previous efforts in terms of
size, annotation richness, and, more importantly, regarding
scene complexity and variability. We go beyond pixel-level
semantic labeling by also considering instance-level seman-
tic labeling in both our annotations and evaluation metrics.
To facilitate research on 3D scene understanding, we also
provide depth information through stereo vision.

Very recently, [75] announced a new semantic scene la-
beling dataset for suburban traffic scenes. It provides tem-
porally consistent 3D semantic instance annotations with
2D annotations obtained through back-projection. We con-
sider our efforts to be complementary given the differences
in the way that semantic annotations are obtained, and in the
type of scenes considered, i.e. suburban vs. inner-city traf-
fic. To maximize synergies between both datasets, a com-
mon label definition that allows for cross-dataset evaluation
has been mutually agreed upon and implemented.

2. Dataset
Designing a large-scale dataset requires a multitude of

decisions, e.g. on the modalities of data recording, data
preparation, and the annotation protocol. Our choices were
guided by the ultimate goal of enabling significant progress
in the field of semantic urban scene understanding.

2.1. Data specifications
Our data recording and annotation methodology was

carefully designed to capture the high variability of outdoor
street scenes. Several hundreds of thousands of frames were
acquired from a moving vehicle during the span of several
months, covering spring, summer, and fall in 50 cities, pri-
marily in Germany but also in neighboring countries. We
deliberately did not record in adverse weather conditions,
such as heavy rain or snow, as we believe such conditions
to require specialized techniques and datasets [51].

Our camera system and post-processing reflect the cur-
rent state-of-the-art in the automotive domain. Images
were recorded with an automotive-grade 22 cm baseline

stereo camera using 1/3 in CMOS 2 MP sensors (OnSemi
AR0331) with rolling shutters at a frame-rate of 17 Hz.
The sensors were mounted behind the windshield and yield
high dynamic-range (HDR) images with 16 bits linear color
depth. Each 16 bit stereo image pair was subsequently de-
bayered and rectified. We relied on [31] for extrinsic and
intrinsic calibration. To ensure calibration accuracy we re-
calibrated on-site before each recording session.

For comparability and compatibility with existing
datasets we also provide low dynamic-range (LDR) 8 bit
RGB images that are obtained by applying a logarithmic
compression curve. Such tone mappings are common in
automotive vision, since they can be computed efficiently
and independently for each pixel. To facilitate highest an-
notation quality, we applied a separate tone mapping to each
image. The resulting images are less realistic, but visually
more pleasing and proved easier to annotate. 5000 images
were manually selected from 27 cities for dense pixel-level
annotation, aiming for high diversity of foreground objects,
background, and overall scene layout. The annotations (see
Sec. 2.2) were done on the 20th frame of a 30-frame video
snippet, which we provide in full to supply context informa-
tion. For the remaining 23 cities, a single image every 20 s
or 20 m driving distance (whatever comes first) was selected
for coarse annotation, yielding 20 000 images in total.

In addition to the rectified 16 bit HDR and 8 bit LDR
stereo image pairs and corresponding annotations, our
dataset includes vehicle odometry obtained from in-vehicle
sensors, outside temperature, and GPS tracks.

2.2. Classes and annotations

We provide coarse and fine annotations at pixel level in-
cluding instance-level labels for humans and vehicles.

Our 5000 fine pixel-level annotations consist of layered
polygons (à la LabelMe [60]) and were realized in-house
to guarantee highest quality levels. Annotation and quality
control required more than 1.5 h on average for a single im-
age. Annotators were asked to label the image from back to
front such that no object boundary was marked more than
once. Each annotation thus implicitly provides a depth or-
dering of the objects in the scene. Given our label scheme,

3214

Figure 32: The bar chart shows the number of pixels for each class summed over the
whole Cityscapes dataset. The classes are further ordered by their general
category defined in [12]. Besides pole group which is subsumed in the node
pole in all hierarchies, the number of pixels di�ers by a factor of up to 3000
[12].

Cityscapes Special The standard Cityscapes dataset does not provide any labels for the
duty of a vehicle. As such labels are required to test out the approach for object
attributes proposed in Section 3.1.3, the Cityscapes dataset is relabeled for special
vehicles like police cars, fire trucks and ambulances. Those images that contain
any vehicle with a specific duty are excluded from Cityscapes and collected in a
new dataset, referred to as Cityscapes Special. Overall, the dataset contains 230
images including 117 with police vehicles, 90 with ambulances and 20 showing fire
trucks. For all other labels that are assigned to the attribute duty, its ground truth
is given by normal. The overall class distribution is similar to Cityscapes, but even
though every image contains at least one object with a special duty, over 75% of
all attribute labels are normal.

Mapillary Vistas Mapillary Vistas is based on a more detailed label policy compared to
Cityscapes so that classes like hydrant and trash bin are included as well. However,
those additional classes are more likely to have fewer examples as the labels of
Cityscapes are based on objects that frequently occur in urban street scenes. In
Mapillary Vistas, the images have a noticeably higher proportion of sky due to the
di�erent camera devices and perspectives. Also, guardrails appear more frequently
because Mapillary includes images of highways from all over the world. Animal
constitutes the rarest class with an average of 61 of the 2,000,000 pixels per image.

44

3. Hierarchical Object Detection

American school buses Next to police, medical and fire, an important type of vehicles
with special duty constitute American school buses. As those do not occur in
Europe, no examples of school buses can be found in Cityscapes. Still, to train a
network on this duty, an initial internal dataset of 200 images of American school
buses is used. The labels only include the school buses whereas all other pixels
are ignored. By this labeling policy, the dataset could be created much faster but
introduces a high bias towards the class bus.

Overall, the datasets are significantly imbalanced. Most machine learning algorithms,
including neural networks, adapt to this bias as they are mostly optimized to achieve
the best result on a randomly sampled data item. If the training dataset is biased, the
optimal performance is also shifted so that recognizing common classes is more crucial.
In the worst case, the algorithm can even learn to ignore a class if it occasionally occurs
and does not significantly influence the mean result [31].

Techniques to encounter imbalanced data can be mostly classified into one of the
following types [45]: Data-level methods adding or removing examples to balance the
distribution, and algorithm-level methods modifying the existing learning algorithm to
handle the bias. Creating new data focusing on the rare classes is not practicable in the
context of high-resolution images for semantic segmentation as labeling a single image
takes up to 1.5 hours [12, 62]. Thus, only data-level methods that reuse the existing
examples like under- and oversampling can be used. Undersampling means that samples
of majority classes are randomly discarded whereas oversampling repeats rare data items
more frequently. However, if examples are shown too often, the network can overfit its
parameters on specific details that are not decisive for the class. Thus, it might fail to
recognize objects on new, unseen images.

For algorithm-level methods, the most common approach is adjusting the loss as it
constitutes the performance measure during training [30]. Weighing the loss function so
that all classes are equally represented is not practicable. For instance, the class guardrail
would require a weight of more than 500 when solely considering the Cityscapes dataset.
If the image contains labels for guardrail, the loss is enormously higher compared to
other examples, even if the network performs well. The oscillating loss destabilizes the
training, especially if several instances of rare classes occur in a row.

To spread rare examples equally over the dataset, it is split into multiple subsets of
images containing objects of rare classes. However, no example should be significantly
more often shown than others. So, the frequency with which an image is sampled from a
subset depends on its size. For the algorithm part, more complex approaches are taken
into account that are presented in the next subsections.

3.2.2. Independent classifiers

Every class has a di�erent ratio of positive and negative examples. For a flat multi-class
classifier of N classes, the average ratio of positive examples is 1 : N ≠ 1. Hence, the

45

3. Hierarchical Object Detection

flat classifier approach naturally introduces a strong imbalance for large class sets. In
contrast, a hierarchical class structure already helps to reduce the number of negative
examples as the predictions of a node are only compared to its siblings. Negative ex-
amples that are assigned to an ancestor are not passed to the subclasses while positives
are propagated throughout the hierarchy. For instance, the descendant natural ground
of the node ground should predict a probability close to 0 if the label is assigned to
its sibling street, but is ignored if the label is a class of a di�erent sub-tree like vehicle
or sky. Thus, the above-mentioned imbalance can only occur between nodes with the
same ancestor significantly reducing the number of classes that are taken into account.
Especially for rare classes, the dataset is reasonably improved by the hierarchical class
structure. Considering the distribution of Mapillary Vistas (see Table 7, Appendix A),
the class animal would have a positive ratio of 61 : 2, 097, 152 = 1 : 34380 for a flat
classifier. Using the hierarchical classification, the node is only compared to human and
has a ratio of 61 : 11, 282 = 1 : 185 reducing the imbalance by a factor of approximately
200.

Still, the labels are imbalanced and rarely uniformly distributed over all classes. A
conventional method to balance positive and negative examples is weighing the loss for
each of these classes di�erently so that the predictions of data items assigned to positive
and negative labels equally contribute to the loss [30]. However, most multi-class classi-
fiers rely on the softmax function where the resulting probabilities of each class depend
on all others. Thus, optimizing a single score to 1 means to push all other probabilities
to 0. If multiple rare classes are assigned to the same parent node, their weight for
positive examples constitute a high factor for the loss of negatives labels for all sibling
classes. A technique where the weighting can be easier and more accurately applied
is using independent, binary classifiers for each node of the hierarchy as mentioned in
Section 3.1.2. The loss is based on a binary cross entropy whereas the weight of each
data item is determined by its label. The sum over all examples is the final loss that the
network tries to optimize.

Balancing positive and negative examples for all classifiers to the same proportion also
has some drawbacks. The mean loss over a set of examples can be interpreted as the
average proportion of correct classifications. If the loss is desired to be similar for the
negative and positive predictions, the classifier will also perform with a similar average
quality on both classes. However, the absolute number of misclassifications significantly
di�ers when the distribution is biased. For instance, if the classifier of animal recognizes
90% of the examples for both classes, it predicts up to 20 times more often an exam-
ple of the class negative to be right than correctly classifying a positive sample. Thus,
rare classes should be predicted less to get a better trade-o� between correctly classified
positives and negatives. The desired proportion of misclassifications is often defined by
metrics which are further discussed in Section 3.3.

Instead of balancing the dataset, the loss can also be reshaped to focus on examples
that are poorly classified. A similar approach is applied by Lin et al. [55] for object

46

3. Hierarchical Object Detection

detection called focal loss. The standard cross entropy is scaled by a factor that decreases
in correlation to the confidence of the network’s prediction. By the use of a focusing
parameter “, the decay rate of the loss can be adjusted. The weighting factor – œ [0, 1]
further balances the losses for positive and negative labels. The focal loss is formally
defined in Equation 3.1. To be consistent to the definition of the binary cross entropy
in Equation 2.3, the prediction is given by ẑ and the ground truth by z.

pt =
I

ẑ if z = 1
1 ≠ ẑ otherwise

, –t =
I

– if z = 1
1 ≠ – otherwise

FL(pt) = ≠–t (1 ≠ pt)“ log (pt)
(3.1)

The default cross entropy loss is given by – = 0.5, “ = 0. Increasing “ reduces the
weight of the well-classified examples. For instance, if “ = 1, the loss for a prediction
of ẑ = 0.9, z = 1 is 10 times smaller compared to the standard cross entropy. The focal
loss is visualized for several values of “ in Figure 33.

Focal Loss for Dense Object Detection

Tsung-Yi Lin Priya Goyal Ross Girshick Kaiming He Piotr Dollár

Facebook AI Research (FAIR)

0 0.2 0.4 0.6 0.8 1

probability of ground truth class

0

1

2

3

4

5

lo
ss

 = 0
 = 0.5
 = 1
 = 2
 = 5

well-classi!ed
examples

well-classi!ed
examples

CE(pt) = � log(pt)

FL(pt) = �(1 � pt)
� log(pt)

Figure 1. We propose a novel loss we term the Focal Loss that
adds a factor (1 � pt)

� to the standard cross entropy criterion.
Setting � > 0 reduces the relative loss for well-classified examples
(pt > .5), putting more focus on hard, misclassified examples. As
our experiments will demonstrate, the proposed focal loss enables
training highly accurate dense object detectors in the presence of
vast numbers of easy background examples.

Abstract

The highest accuracy object detectors to date are based
on a two-stage approach popularized by R-CNN, where a
classifier is applied to a sparse set of candidate object lo-
cations. In contrast, one-stage detectors that are applied
over a regular, dense sampling of possible object locations
have the potential to be faster and simpler, but have trailed
the accuracy of two-stage detectors thus far. In this paper,
we investigate why this is the case. We discover that the ex-
treme foreground-background class imbalance encountered
during training of dense detectors is the central cause. We
propose to address this class imbalance by reshaping the
standard cross entropy loss such that it down-weights the
loss assigned to well-classified examples. Our novel Focal
Loss focuses training on a sparse set of hard examples and
prevents the vast number of easy negatives from overwhelm-
ing the detector during training. To evaluate the effective-
ness of our loss, we design and train a simple dense detector
we call RetinaNet. Our results show that when trained with
the focal loss, RetinaNet is able to match the speed of pre-
vious one-stage detectors while surpassing the accuracy of
all existing state-of-the-art two-stage detectors.

50 100 150 200 250

inference time (ms)

28

30

32

34

36

38

C
O

C
O

 A
P

B C

D

E

F

G

RetinaNet-50
RetinaNet-101

AP time
[A] YOLOv2† [26] 21.6 25
[B] SSD321 [21] 28.0 61
[C] DSSD321 [9] 28.0 85
[D] R-FCN‡ [3] 29.9 85
[E] SSD513 [21] 31.2 125
[F] DSSD513 [9] 33.2 156
[G] FPN FRCN [19] 36.2 172
RetinaNet-50-500 32.5 73
RetinaNet-101-500 34.4 90
RetinaNet-101-800 37.8 198

†Not plotted ‡Extrapolated time

Figure 2. Speed (ms) versus accuracy (AP) on COCO test-dev.
Enabled by the focal loss, our simple one-stage RetinaNet detec-
tor outperforms all previous one-stage and two-stage detectors, in-
cluding the best reported Faster R-CNN [27] system from [19]. We
show variants of RetinaNet with ResNet-50-FPN (blue circles) and
ResNet-101-FPN (orange diamonds) at five scales (400-800 pix-
els). Ignoring the low-accuracy regime (AP<25), RetinaNet forms
an upper envelope of all current detectors, and a variant trained for
longer (not shown) achieves 39.1 AP. Details are given in §5.

1. Introduction
Current state-of-the-art object detectors are based on

a two-stage, proposal-driven mechanism. As popularized
in the R-CNN framework [11], the first stage generates a
sparse set of candidate object locations and the second stage
classifies each candidate location as one of the foreground
classes or as background using a convolutional neural net-
work. Through a sequence of advances [10, 27, 19, 13], this
two-stage framework consistently achieves top accuracy on
the challenging COCO benchmark [20].

Despite the success of two-stage detectors, a natural
question to ask is: could a simple one-stage detector achieve
similar accuracy? One stage detectors are applied over a
regular, dense sampling of object locations, scales, and as-
pect ratios. Recent work on one-stage detectors, such as
YOLO [25, 26] and SSD [21, 9], demonstrates promising
results, yielding faster detectors with accuracy within 10-
40% relative to state-of-the-art two-stage methods.

This paper pushes the envelop further: we present a one-
stage object detector that, for the first time, matches the

1

ar
X

iv
:1

70
8.

02
00

2v
1

 [c
s.C

V
]

7
A

ug
 2

01
7

Figure 33: The focal loss scales the cross entropy by the factor (1 ≠ pt)“. The greater “

is set, the smaller is the loss for well-classified examples. The plot compares
the loss function for di�erent values of “ œ [0, 5] [55].

Setting “ to a value higher than five is less practical because the loss for a random
prediction of 0.5 almost is counted as a well-classified example of both positive and
negative labels. In experiments by Lin et al. [55], a value of 2 for “ and 0.25 for –

constitute the best setting for the imbalanced dataset of positive and negative examples
for bounding box detection. As the classifiers within the hierarchical class structure
encounter less imbalance, a lower value of “ might be used. However, the optimal
set might correspond to the number of positive and negative examples. To test this
hypothesis, more than 100 experiments with di�erent values of “ and – for each classifier
would be necessary. As this should not be the focus of the thesis, a default configuration
of “ = 1 and – = 0.5 is applied.

47

3. Hierarchical Object Detection

3.2.3. Moving average filters for class weights

The di�culty to learn a class does not always correspond with the number of exam-
ples. For instance, an American school bus is due to its distinctive yellow color easier
to recognize for the network so that fewer examples are su�cient. Weighing the loss
solely based on the dataset distribution can cause the network to focus on classes that
are recognized well. Thus, a new approach that dynamically adjusts the weights to the
current performance is developed.

Firstly, the performance has to be e�ciently measured as the calculation is done dur-
ing training and should be executed as often as possible. Determining the scores on
the validation dataset requires larger step sizes as 500 images have to be processed per
iteration. As an alternative, the mean distance of prediction and label during training
can be used as a metric. The more confident the network is on a class, the more accurate
are its predictions. The distance is determined merely by disti = |zi ≠ ẑi| for all data
items i (gathered by positive and negative examples) and can, therefore, be calculated
by a negligible computational e�ort. As the prediction accuracy can strongly vary over
images and the performance should ideally represent the whole dataset, a moving aver-
age filter (MAF) is applied that smooths the input by taking the average of the last M

values. Thus, the metric is defined as the mean distance of the previous M batches.

Based on this metric, the weight factors for positive and negative examples can be
determined. The best performance is stated by a distance of 0, while the worst is given
by 1. The network has to focus on the class which is poorly recognized compared to the
other. Thus, if the mean distance of the positive examples is close to zero, its weight
factor should also be small whereas the loss of negatives is scaled up. To implement
such a weighting method, the mean distances are divided by each other. For instance,
if the mean distance of the positive examples is 0.17 and 0.1 of the negatives, the pos-
itive weight factor is calculated by 0.17

0.1 = 1.7. Similarly, the weight factor for negative
examples is 0.1

0.17 ¥ 0.6. The goal of the loss weighting is reduce the imbalance for each
classifier so that the optimal setting is having both factors equals one. Figure 34 visu-
alizes the weighting technique.

The mean distance is calculated for each class independently. However, as the class
structure is based on a hierarchy, the relations of the classes need also to be taken into
account for the weights. For example, most positive examples of the node elongated in-
frastructure belong to the descendant building. Calculating the average over all examples
clearly prefers the data items where the labels are assigned to building. If the classifier
performs well for building but not for other rare subclasses like guardrail, the loss is prob-
ably downscaled reducing the performance on rare classes. To introduce class relations
into the moving average filters, the mean distance is determined regarding the labels.
Thus, every class is assigned to a positive moving average filter for all its descendants
and a filter for negative examples of all sibling nodes and their subclasses. The weight
for a pixel is calculated by the value of the corresponding label-dependent filter divided

48

3. Hierarchical Object Detection

0.12 0.13 0.21...0.19 Mean: 0.170.16

0.11 0.07 0.12...0.08 Mean: 0.100.09

Positive MAF

Negative MAFMean Distance
Positive Weight Factor: !.#$!.# = 1.7

Negative Weight Factor: !.#!.#$ ≈ 0.6

Figure 34: The performance of the network is measured by the mean distance of pre-
dictions and labels for both positive and negative examples. The value is
smoothed by applying a moving average filter saving the distances of the last
M training steps. The loss weight is the ratio of positive and negative mean
distance.

by the average distance for the other binary class. Regarding the previous example, the
positive loss of the class elongated infrastructure is now di�erently weighted whether the
label is assigned to building or guardrail. However, both mean distances are compared
to the average distance of negative examples which is determined by the moving average
filter that is independent of the labels. The example is illustrated in Figure 35.

The method of label-dependent moving average filters helps to detect common con-
fusions, even for frequently occurring classes. If the network often predicts vegetation
instead of nature, the loss weight is increased to prevent such confusions. However,
if the dataset is extremely imbalanced and a class rarely has positive examples, the
weighting can lead to a fixed point where the average positive distance is much greater
than the negative, but the calculated weight factor is not high enough to compensate
the imbalance. In experiments, no such case could be observed for any of the classes in
the hierarchies presented in Section 3.1.4. Another drawback of the proposed weighting
technique is that the calculated factors are independent to the actual loss. If a class is
harder to learn, the loss for positive and negative examples is greater than the average
of other classes. An additional weight can make the network focusing on such a class
and try to optimize the mean performance over all classes. For a hierarchical approach
where multi-class classifier instead of binaries is used, this weighting method would be
applied to the set of directly connected children to balance the dataset between them.
Nevertheless, in Section 3.4, a loss function based on the Intersection over Union metric
is proposed that considers each class independently to the number of examples. Thus, a
weight factor for each class might be redundant to the higher loss a worse performance
already causes.

3.3. Hierarchical metric
To compare di�erent models, the performance of each need be determined. This is mostly
done by metrics that compress the network predictions into a few scores representing the
quality of the predictions. Although there exists multiple, common metrics for standard

49

3. Hierarchical Object Detection

0.04 0.12 0.08...0.06

Positive MAF

0.02 0.09 0.07...0.05Label Mean
Distance

0.25 0.32 0.21...0.18

Building

Guardrail

...

0.12 0.13 0.09...0.08

Negative MAF

0.14 0.09 0.12...0.11

0.08 0.11 0.04...0.07

Pole

Sign

...

Building 0.04

Guardrail 0.22

Pole 0.10

Sign 0.06

Mean: 0.06

Mean: 0.24

Mean: 0.09

Mean: 0.13

Mean: 0.07

Mean: 0.11

Positive Weight Factor – Building: !.!#!.$$ ≈ 0.5

Positive Weight Factor – Guardrail: !.()!.$$ ≈ 2.2

Negative Weight Factor – Sign: !.!+!.!, ≈ 0.8

Negative Weight Factor – Pole: !.$.!.!, ≈ 1.4

Figure 35: The figure shows a label-dependent weighting for the class elongated infras-
tructure. On the left, the mean distances between labels and predictions are
stated for selected child- and sibling nodes. For each subclass (top row), a
MAF for the positive distance measures is created. Besides, the average dis-
tance over all pixels independent of the labels constitutes the input to another
filter. Similarly, sibling nodes and their children (bottom row) are assigned to
a MAF for negative measures. The label-dependent weights are calculated by
dividing the measure of the corresponding class MAF by the mean distance
of the opposite binary class.

classification, semantic segmentation and object detection tasks, most of them do not
consider relationships between classes. Confusing cars and trucks are less crucial than,
e.g. poles and pedestrians so that the metric has to be adjusted to such relations.
Therefore, this section firstly reviews popular metrics for flat classifiers, and secondly,
discusses hierarchical approaches for measuring the performance of a network.

3.3.1. Review of classifier metrics

A common technique for evaluating the correctness of a classifier is to determine the
numbers of correctly and incorrectly classified examples. Therefore, four parameters are
defined for each class:

• True positives (TP) are examples that are correctly predicted as the class.

• True negatives (TN) are the cases where the prediction and the ground truth are
both not the class.

• False positives (FP) are falsely assigned to the class.

• False negatives (FN) are examples that are incorrectly classified as not belonging
to the class.

50

3. Hierarchical Object Detection

These parameters often are ordered in a matrix, called confusion matrix. For a bi-
nary classification task, where only the classes positive and negative are considered, a
confusion matrix for the positive class is shown in Table 2. The columns represent the
predictions of the classification algorithm, whereas the rows constitute the correspond-
ing label. If both prediction and ground truth are assigned to the positive class, the
example counts to the true positives. Similarly, if both are negative, it belongs to the
true negatives. The cases where the prediction di�ers from the ground truth are divided
into false positives and false negatives based on the predicted class.

Prediction
Positive Negative

Ground Truth Positive TP FN

Negative FP TN

Table 2: A confusion matrix for a binary classification task separates the evaluation
results in the combinations of ground truth and prediction. The columns rep-
resent the selected class by the classifier and the rows the labeled class while
the corresponding parameter is shown in the cell. The visualization is adapted
from [14].

However, most classification problems have multiple classes. The confusion matrix
can be extended to this task by listing the classes over rows and columns and recording
the combination of prediction and ground truth label for every evaluation input. Table 3
represents an example of a confusion matrix for the classes dog, car and person. The
parameters TP, FP, FN and TN can be similarly determined as for the binary classi-
fication. When looking at the class car, the number of true positives is TPCar = 100
as there prediction and ground truth is assigned to the class. The true negatives are
all examples where neither prediction nor ground truth belong to the class car, re-
sulting in TNCar = 20 + 12 + 25 + 215 = 272. The number of predictions for car
where the ground truth is any of the other classes, are summed up to the false positives
FPCar = 8 + 13 = 21. The last parameter, the false negatives, is thus represented
by the the cases where the ground truth is assigned to car, but the algorithm recog-
nized it as dog or person: FNCar = 5 + 20 = 25. Furthermore, the overall number of
ground truth labels can be expressed by the parameters. The amount of positive labeled
examples for the class car arise from the sum of its true positive and false negatives:
PCar = TPCar + FNCar = 125. Hence, the sum of true negatives and false positives con-
stitute the amount of negative labels: NCar = FPCar + TNCar = 293. The same values
for the positive labels can be calculated by a sum over columns whereas the negatives
are the sum of P from all other classes. Still, the first conversion is often used to simplify
the computation of various metrics.

The confusion matrix visualizes the relation of the class predictions making it easier to
spot common mistakes or confusions. In Table 3. For example, it gets obvious that the

51

3. Hierarchical Object Detection

Prediction
Car Dog Person

Ground Truth
Car 100 5 20
Dog 8 20 12
Person 13 25 215

Table 3: The table summarizes an example of a confusion matrix for a multi-class classi-
fication of the classes car, dog and person. The numbers in the cells constitute
the number of appearances for the specific combination of ground truth (row)
and prediction (column).

algorithm is more likely to mix up the classes dog and person rather than predicting car.
Nevertheless, when comparing two di�erent classifiers, it is hard to determine the better
performance of both as one might have a lower false positive rate for a certain class, but
the other might recognize more examples resulting in a lower number of false negatives.
To measure the performance of a classifier, multiple metrics exist. Therefore, the most
common evaluations should be presented here and calculated for the example in Table 3.

Precision The precision measures how often a positive prediction for a certain class
was correct. For example, the classifier of Table 3 predicted 121 times the class
car from which 100 were correct. Thus, the precision is determined by PrecCar =
100
121 ¥ 82.6%. The computation can also be represented by the parameters of the
confusion matrix:

Prec = TP

TP + FP
(3.2)

Recall Similarly to the precision, the recall determines how many examples of a class
were actually recognized by the classifier. As for the class car, 100 of 125 cars were
correctly classified, the corresponding recall score is calculated by RecCar = 100

125 =
80.0%. Again, the formula can also be expressed by the defined parameters:

Rec = TP

TP + FN
= TP

P
(3.3)

F-score Both precision and recall can be combined into one single metric, called the
F-score or F1-score. The measure is the harmonic mean of precision and recall
which is the average if both values are equal but tends to the smaller number
in the case of imbalance. The advantage of the harmonic mean in comparison
to the arithmetic mean concerning classifier evaluation is that if an algorithm
predicts every example as car, it would have a recall of 100% but a precision of
0%. Although the performance is bad, the arithmetic mean would result in a score
0f 50%. Despite, the harmonic mean is 0% in this context representing the issue

52

3. Hierarchical Object Detection

much better. Nevertheless, not always is recall and precision equally important.
With an additional constant —, the trade-o� between precision and recall can be
adjusted to the specific task. Overall, the F-score is calculated by:

Fscore = (—2 + 1) · Prec · Rec
—2 · Prec + Rec (3.4)

Accuracy The accuracy rate evaluates a classifier by its percentage of correct predic-
tions. Therefore, not only the true positives but also the true negatives are taken
into account. For example, the classifier of Table 3 has 100 correctly recognized
car objects and 272 examples where neither ground truth nor prediction was as-
signed to this class. Overall, the evaluation included 418 examples. Hence, the
accuracy for the class car is determined by AccCar = 100+272

418 ¥ 89.0%. Concerning
the parameters of the confusion matrix, the accuracy rate can be expressed by:

Acc = TN + TP

TN + FN + TP + FP
= TN + TP

N + P
(3.5)

However, this measure should rather be used when the class distribution is nearly
balanced. Otherwise, the accuracy rate can still be high for a class that is not
recognized well. In the example above, the class dog has an accuracy of 88.0%
although the precision and accuracy are both equals or less than 50%.

Intersection over Union The last performance measure that should be discussed here
is the Intersection over Union (IoU), also called the Jaccard Index. This measure
describes the similarity of predictions and labels over a set of examples by dividing
the intersection by the size of the union. Regarding the confusion matrix, the inter-
section of predictions and labels are the true positive examples for a specific class,
whereas the union is the number of examples for which either prediction, ground
truth or both are assigned to the class. Therefore, the score can be calculated by:

IoU = TP

FN + TP + FP
= TP

P + FP
(3.6)

The Intersection over Union is a common measure for semantic segmentation where
every pixel constitutes an example, and the predicted and labeled region can ac-
tually be compared by visualization.

All presented metrics share the feature that a higher score means the better performance
of a classifier. For multi-class classification, each measure is calculated for every class
independently. However, to get a single final evaluation number, the scores are mostly
averaged over classes. As an alternative, the parameters TP , TN , FP and FN can also
be summed up over classes and used for calculating the scores. The disadvantage of this

53

3. Hierarchical Object Detection

method is that it ignores the class imbalance and is dominated by frequently occurring
classes [82]. Furthermore, all measures that use the number of true negatives in a multi-
class environment are mostly unstable regarding class imbalances as the performance
of a single class is significantly influenced by the number of examples for other classes.
When distinguishing between N classes, a random prediction would generate at least
N ≠ 2 true negatives if only one class can be chosen at a time. Therefore, measures like
Precision, Recall or IoU are preferred to multi-class classification in contrast to accuracy
[82].

3.3.2. Depth-Dependent Distance Metric

All previous evaluation measures are inadequate for hierarchical classification models as
they do not take the class topology into account. Thus, the fact is ignored that deeper
classes might be harder to distinguish than shallow ones, but also that a false predic-
tion of a sibling is less crucial than classes from a whole di�erent part of the hierarchy.
Various performance measure for the task of hierarchical classification exist that adjust
better this domain and actively consider the relations between classes [14, 19, 78, 82].
Therefore, this section discusses the application of hierarchical metrics and their advan-
tages and disadvantages in the context of this thesis.

Firstly, the precision and recall rate can be adapted to hierarchical classification. For
this, [44] proposed to use the set of nodes on the path from the root to the prediction
and label instead of single classes. The root itself is excluded from the sets since all
examples belong to the root by default. The similarity is measured by the cardinality
of the both paths’ union divided by the cardinality of either the prediction (precision)
or the ground truth (recall). Thus, the score of the hierarchical precision is determined
by:

hPrec = |Ancestor (Cp) fl Ancestor (Ct) |
|Ancestor (Cp) | (3.7)

with Cp as the predicted class of the classifier algorithm, and Ct the ground truth.
The recall replaces the denominator by the label set resulting in following equation:

hRec = |Ancestor (Cp) fl Ancestor (Ct) |
|Ancestor (Ct) | (3.8)

As an example, consider the hierarchy in Figure 36 where Cp = G and Ct = I.
The paths of both are determined by Ancestor (Cp) = {B, F, I} and Ancestor (Ct) =
{B, G}. The precision is hence hPrec = |{B,G}fl{B,F,I}|

|{B,F,I}| = |{B}|
|{B,F,I}| = 1

3 and the recall
hRec = |{B}|

|{B,G}| = 1
2 . In contrast, using the precision and recall for flat classifiers, both

would end up being 0.0% although the prediction was not so far away from the ground
truth.

54

3. Hierarchical Object Detection

A

B C D

E F G

H I

J K

Figure 36: The nodes of the hierarchy are visualized with circle containing their class
name. The class A constitutes the root node. The directed connections
represent an is-a relationship between nodes. Therefore, the descendants of
A are B, C and D.

However, as the evaluation contains more than only one data item, the di�erent values
need to be combined. Similar to the measure for multi-class classification, two common
approaches exist. Firstly, the sum can be applied to all numerators and denominators
and calculating the precision over all examples. But especially for the precision, one
prediction in a false subtree can have a very high influence on the performance. For the
hierarchy in Figure 36, a misclassification of an example from class J in C is weighted
one third compared to a prediction of I although both miss the first hierarchy level.
The second approach is calculating the measures on every single example and averaging
the values afterwards. Nevertheless, the drawback is that it does not consider if the
classifier missed the first level, but is also uncertain for deeper classes. For example,
misclassifying C in B should be rated better than I.

Another, popular hierarchical metric focuses on the distance between classes [87].
The distance is determined by the number of links that are on the path between both
classes. Furthermore, every false prediction is assigned to a contribution that defines the
similarity of the prediction and the ground truth. For this contribution, an acceptable
distance Dis◊ has to be specified by the user. If the distance between the prediction and
label is smaller than the acceptable distance, the misclassification is considered to be
close and, hence, contributes to the class. Otherwise, it leads to a negative contribution.
To limit the maximum negative value for large hierarchies, the contribution is refined to
be in the range of [≠1, 1]. Formally, the contribution of a prediction Cp for the label Ct

and the input x can be calculated by:

Con (x, Cp) = 1 ≠ Dis (Cp, Ct)
Dis◊

RCon (x, Cp) = min (1, max (≠1, Con (x, Cp)))
(3.9)

55

3. Hierarchical Object Detection

For example, if the accepted distance is defined as Dis◊ = 3, the prediction Cp = H

for an input assigned to the label Ct = I results in a contribution of Con(x, H) =
1 ≠ Dis(H,I)

3 = 1 ≠ 2
3 = 1

3 . In contrast, if the prediction would have been Cp = K,
the contribution is determined by Con(x, K) = 1 ≠ Dis(K,I)

3 = 1 ≠ 5
3 = ≠2

3 . To get a
final metric, the contributions are recorded and summed for all false positive and false
negative predictions. With those parameters, the standard metrics for flat classification
can be adjusted for the hierarchical class structure:

Prec = max (0, TP + FPCon + FNCon)
TP + FP + FNCon

Rec = max (0, TP + FPCon + FNCon)
TP + FP + FPCon

(3.10)

However, the distance metric does not consider the depth of the single classes. Thus,
the contribution of C and D is the same as H and I, although the first pair is much more
crucial as it is on the first hierarchy level. To overcome this drawback, [8] proposes a
depth-dependent distance metric that weights the edges by exponentially decreasing the
value with the depth. The distance between two classes is specified by the summation
of the edges’ weights instead of counting. So, the contribution of deeper, nearby classes
is greater compared to high-level misclassifications. Figure 37 visualizes an example of
the metric.

Obstacle

Vehicle

PassengercarLarge Vehicle

BusTruck …

…
1

!
"

!
"

!
#

!
#

!
#

1

Figure 37: For a depth-dependent distance metric, the edges are weighted by an expo-
nentially decreasing factor. In this example, a basis weight of 0.5 is chosen,
and the class passenger car in blue is the ground truth label whereas the
red shaped node bus was predicted. The distance between both classes is
calculated by the sum of the edges’ weights that form the path from bus to
passenger car (highlighted in light red). Thus, the distance is determined by
1.25.

This new distance measure can be implemented in the contribution concept of equa-
tion 3.9. However, introducing weights depending on the depth of a node arises new

56

3. Hierarchical Object Detection

problems, as discussed in [14]. If the hierarchy is imbalanced, the distances might sig-
nificantly vary as deeper classes naturally come along with greater distances. Thus, a
misclassification in a subtree can have a greater distance than two classes on the highest
level when using a factor greater than 0.5. Furthermore, if the hierarchy is not a tree,
but a directed acyclic graph (DAG), then it is more di�cult to define the depth of a
node if it has multiple paths to the root.

Another problem is that the depth of a node does not necessarily correspond to the
richness of information it holds. Considering the hierarchy of Figure 48, the class nature
in the sub-tree obstacle is as specific as terrain for ground, but the depth of both is
di�erent. Hence, the weights could also be specified by the class similarity, known as
semantics-based measure [87]. This similarity can be calculated in various ways, like
describing each class with a feature vector and determine the distance between both.
However, the selection of the similarity is mostly subjective, and the hierarchy itself
should already map the class structure.

To select a suitable evaluation metric for the task of hierarchical classification for
autonomous driving, the class structure needs to be reviewed (see Appendix B). First
of all, all proposed hierarchies are trees so that there exists exactly one path from the
root to every other node so that an explicit depth-dependent edge weighting is possible.
However, the structures are significantly imbalanced as on the first hierarchy level, sky
has no children at all, ground has between 6 and 13 with a depth of 2 and 3, and object
has more than 25 classes in both standard and large-scale hierarchy. The maximal depth
is limited to 6 with one additional attribute. Overall, the hierarchies include up to 65
di�erent classes.

The metric should be suitable for object detection, and semantic segmentation as both
tasks are evaluated in this theses. Therefore, the precision, recall and IoU measure need
to be adjusted to the hierarchical classification. Due to the considerable imbalance,
especially with a single class on the first level, an exponentially decreasing edge weight
might be able to represent the semantic structure the best. Furthermore, as the hierar-
chical adjustments are performed on the confusion matrix’s parameters, all flat metrics
stay unchanged, and the performance of the network can be easier compared to a flat
classifier. For the hierarchies in appendix B, a factor of 0.5 would lead to a minimal edge
weight of 0.0625 that is assigned to, e.g. rider æ bicyclist, whereas the distance between
passenger car and bus is ten times higher (0.625). Hence, finding a suitable, acceptable
distance with this factor is not easy as there is still a di�erence between rider and bi-
cyclist, but misclassifications of large vehicles as regular cars should also contribute. To
overcome this problem, a higher factor of 0.8 is chosen for all hierarchies resulting in
a minimal weight of approximately 0.4096. An acceptable distance of 1.5 allows small
correlations between nearby classes whereas a mistake on the first hierarchy level is not
tolerated.

Still, a negative contribution would distort the measures and making it di�cult to

57

3. Hierarchical Object Detection

compare to flat metrics as these do not include additional penalties for very bad mis-
classifications. Thus, the contribution is refined to the range of [0, 1] resulting in the
following adaptation of equation 3.9:

RCon (x, Cp) = min (1, max (0, Con (x, Cp))) (3.11)

Furthermore, instead of solely using the contribution for precision and recall as pro-
posed by [87], all parameters of the confusion matrix are adapted to close predictions.
The idea is that if the classifier predicts rider instead of bicyclist resulting in a contribu-
tion of Con(x, rider) = 1 ≠ 0.4096

1.5 ¥ 0.727, the example is treated as 72.7% true positive
and 27.3% false negative for the class bicyclist. Similar, the false positive value of rider
is increased by 27.3% and the true negatives by 72.7%. Thus, the hierarchical confusion
matrix’s parameters can be formally defined as:

TP = TP + FNCon

TN = TN + FPCon

FP = FP ≠ FPCon

FN = FN ≠ FNCon

(3.12)

Moreover, the hierarchical precision, recall and Intersection over Union measure are
defined by:

Prec = TP

TP + FP
= TP + FNCon

TP + FNCon + FP ≠ FPCon

Rec = TP

TP + FN
= TP + FNCon

TP + FN

IoU = TP

TP + FP + FN
= TP + FNCon

TP + FN + FP ≠ FPCon

(3.13)

However, the metric still has some drawbacks. The depth-dependent distance does
not always fit the semantic distance between classes. One example for this is terrain and
nature. Although both are sometimes hard to distinguish as patches of grass belong to
terrain and plants to nature, but small plants can be annotated as each of these classes,
the metric distance is 4.24 and, thus, much greater than the accepted distance of 1.5.
Nevertheless, this problem can also be solved by an improved class structure that con-
siders all relations between classes, but this hierarchy would be a more complex DAG
and goes beyond the scope of this thesis.

Besides the depth-dependent distance metric, the average distance for false positives
and false negatives of each class are recorded to get an inside view of how far away
the classifier actually was. Furthermore, the measures are also evaluated without the
contribution to have an exact comparison between flat and hierarchical classification.

58

3. Hierarchical Object Detection

As the evaluation labels from datasets like Cityscapes [12] and Mapillary Vistas [62] are
based on a flat, single-class classification, the metric needs to be adjusted to a multi-
classification task. Therefore, if, e.g. the class label is H based on the hierarchy of
Figure 36, the prediction is also evaluated on the ancestors F and B by using the same
false positive/negative contribution as H. Still, the subclasses are subsumed from the
perspective of an ancestor node, so that misclassification of I instead of H is a true
positive for the parent F .

3.4. Metric Loss Function
The Intersection over Union metric handles imbalanced data by normalizing the score
of a single class by the number of examples and taking the mean score of all classes
as the final performance. Since the loss function has to handle imbalances as well, it
can be considered to train on the metric itself. Very few literature [7, 67] exist dealing
with the IoU metric as a loss function, especially when considering a hierarchical class
taxonomy. Therefore, a novel approach to train a neural network on the Intersection
over Union for hierarchical classification will be deepened in this section. The first part
deals with the mathematical derivation of the IoU score as loss function, whereas the
second presents methods to consider the hierarchical class structure for the IoU. Various
weighting techniques for rare classes are discussed in the last subsection. All examples
within this section are based on the mid-size hierarchy of Figure 48 in Appendix B.

3.4.1. Using IoU score as loss function

For semantic segmentation, the Intersection over Union (IoU) score represents a stan-
dard performance measure. As introduced in Section 3.3.1, the IoU is determined by
the similarity between the predicted region and the ground truth over a set of images.
Based on the confusion matrix, it is calculated by IoU = T P

P +F P
.

One of the advantages of the IoU score is that it is regardless of the number of ex-
amples per class. The only part which is influenced by the dataset distribution is the
proportion of false positives as it gets more likely to falsely predict a class with an in-
creasing number of negative examples while the positive remain unchanged. Still, for
rare classes, the number of negatives is significantly higher compared to standard cate-
gories, but it is also intended that the rate of false positives is lower for such classes.

However, the IoU score is a discrete, count-based measure whereas the outputs of
a CNN are probabilities. The loss function needs to be globally di�erentiable as the
network’s parameters are optimized regarding the gradients of the single loss terms. So,
the measure cannot be accurately determined but approximated with the output prob-
abilities. A similar approach is proposed by [67] where the network is trained on object
category segmentation labeling each pixel as being part of a given object or not. In this
task, the distribution of positive and negative labels also are significantly imbalanced.
Nevertheless, as in this thesis the classifier is based on a hierarchical structure, the loss

59

3. Hierarchical Object Detection

function has to be adapted to this concept. This is why the following paragraphs discuss
the mathematical derivation of using the Intersection over Union score as loss function
for hierarchical classification.

First of all, to be consistent with [67], the same mathematical notation is used for the
derivation. Let V be the set of all pixels of all the images in the training set (in this case
a batch) and X œ [0, 1]n be the output of the network representing pixel probabilities
over the set V for all n classes. Y œ {≠1, 0, 1}n gives the ground-truth assignment for
the set V whereas 1 represents labels where the class is correct, 0 where the class is false,
and ≠1 where the class is ignored. C is a set constituting the particular class label for
every pixel in V . Based on this notation, the metric parameters are approximated by:

P =
ÿ

vœV

(Yv == 1)

N =
ÿ

vœV

(Yv == 0)

TP =
ÿ

vœV

Xv · (Yv == 1)

FP =
ÿ

vœV

Xv · (Yv == 0)

(3.14)

Note that FN and TN can be similarly calculated but neglected as these parameters
are subsumed by P and N . The IoU score is approximated by applying TP , FP and P

in equation 3.6:

IoU = TP

P + FP
=

q
vœV Xv · (Yv == 1)

q
vœV (Yv == 1) + q

vœV Xv · (Yv == 0) (3.15)

This function is continuous and globally di�erentiable regarding X and, hence, to the
outputs. Furthermore, the loss can be specified by applying a negative logarithm on the
IoU: loss = ≠ log(IoU). The logarithm has the benefit of an increasing loss for minimal
values and corresponds to the log-likelihood. To optimize the internal parameters of
the network, the gradients of the loss function concerning the outputs X need to be

60

3. Hierarchical Object Detection

determined. For a single prediction Xv, the gradients are calculated by:

≠ˆ log (IoU)
ˆXv

= ≠ 1
IoU

· ˆIoU

ˆXv

= ≠P + FP

TP
·

A

(Yv == 1) · 1
P + FP

≠ (Yv == 0) · TP

(P + FP)2

B

∆ ≠ˆ log (IoU)
ˆXv

=

Y
_______]

_______[

≠ 1
TP

if Yv = 1

1
P + FP

if Yv = 0

0 otherwise

(3.16)

The gradients for predictions with a positive label are anti-proportional to the ap-
proximated true positives. This means that if the network performs well on recognizing
the class, the gradients are smaller and, thus, the parameters are less adjusted. In con-
trast, if the desired output is 0, the gradients are anti-proportional to the number of
positives plus the false positive predictions. Bad performance of the network leads to a
high amount of false positives so that the gradients are small. Although one would ex-
pect that the gradients increase for worse predictions, the IoU actually exhibits greater
changes regarding FP if only a few are misclassified. For example, the IoU for a pre-
diction of FP = 10 and TP = P = 5 is IoU = 5

5+10 ¥ 33.3%. Reducing the FP score
by 1 increases the IoU by about 2.3%. In comparison, if the score is FP = 2, a single
less false prediction results in a rise of the IoU score from 71.4% to 83.3%. Thus, it is
even more important that the network reduces its false positive predictions if it already
performs quite well. Although the gradients appear counter-intuitive, experiments have
demonstrated that applying a logarithm on the IoU loss function achieves significantly
better results than without.

3.4.2. Adaption of IoU for hierarchical classification

The loss of a multi-class classifier is mostly an average over the losses of all classes.
However, when using a hierarchical classification approach, the relationships between
classes are ignored by a simple mean. If the network performs badly on the nodes of the
first level, all descendants su�er under the false predictions as well. Thus, the IoU score
has to be adjusted to the class structure.

As mentioned earlier, one of the benefits of the IoU is its invariance to class imbalances.
However, when optimizing the IoU of the class obstacle, the imbalance of its children is
not handled. Considering the distribution of only 2.56% positive labels for vulnerable
road user compared to over 50% for the class infrastructure, it is much more likely that

61

3. Hierarchical Object Detection

the network achieves a high score on obstacle for pixels that are labeled as infrastructure
than as vulnerable road user. To preserve the invariance to imbalances for descendants,
the IoU for a class c needs to be calculated in two di�erent manners:

IoUc =

Y
_____]

_____[

TP

P + FP
if class c has no subclasses

1
M

·
ÿ

csªc

Q

a TPcs

Pcs + FP ·
1

Pcs
P

2

R

b otherwise
(3.17)

M constitutes the number of descendants cs of the class c, Pcs the amount of positive
labels for the subclass cs, and TPcs the prediction of the class c for the labels of cs.
The above equation expresses that the IoU is a mean over conditional IoUs based on
the descendants of a class. Note that only subclasses are considered for which at least
one positive label exist: Pcs > 0. The false positives are weighted proportionally to the
number of positive labels for the subclass assuming a similar distribution of false pre-
dictions as true labels. Although the exact number of false positives for each class could
be determined, it is not considered here as it requires a huge computational e�ort when
operating on high-resolution images with more than 50 classes. In Section 3.4.3, a more
extensive discussion of the equation shows that the false positives FP are independent
to the subclasses and the conditional part is only necessary for true positives.

An alternative is applying the logarithm before averaging the conditional IoUs. This
variation focuses more on the classes with low accuracy as the logarithm tends to in-
finity for zero. For a prediction with an IoU of 0.1 and 0.9 of two subclasses, the loss
is calculated by 1

2 · (≠ log 0.1 ≠ log 0.9) ¥ 1
2 · (2.3 + 0.1) = 1.2. Thus, the loss for 0.1 is

23 times greater than for 0.9 leading to corresponding high gradients. However, such
great weightings can cause instability within the network. If a class is represented by a
single, small object in a batch which is not detected, the loss could explode although the
classifier performs well on other descendants. This assumption is established by experi-
ments in which the loss function with early applied logarithm resulted in a significantly
worse performance compared to the reversed order of operations. Besides, the goal of
the metric loss function is to optimize the mean Intersection over Union. Every class is
considered equally regardless of the actual performance. Thus, the weighting in the loss
function should be applied similarly.

Still, with the current approach, the loss function is disregarding the position of a
class in the hierarchy. Especially base classes like obstacle are treated equally to leafs
like caravan although the performance of the first class influences all its descendants.
A simple idea of weighting classes corresponding to its subclasses is having losses along
the whole path for each single class. So, a class’s loss is defined by the sum of its losses

62

3. Hierarchical Object Detection

at each level:

lossc = ≠
ÿ

cªcp

log
1
IoU(cp|c)

2
(3.18)

IoU(cp|c) represents the IoU of ancestor cp under the condition the prediction or label
is assigned to c. However, this approach has two major drawbacks. Firstly, its loss
shows the same instability as the early applied logarithm. Rare classes can cause great
losses at levels on which the detection for other classes is quite well. Secondly, leafs
at a shallow depth level, like the class sky, are weighted up to 40 times less than its
neighbors obstacle and ground . So, the network might badly perform on sky generating
many false positive predictions and tearing down the other classes. To prevent this,
another weighting technique has to be developed. Therefore, the mean IoU calculation
defined in Equation 3.17 can be extended by weighting the class loss by the number of
active descendants. A leaf is called active if the batch contains at least one example
of the class in its labels C. To reduce the imbalance at shallow levels, the weight is
calculated by the square root of the number of active descendants:

lossc = ≠
Û ÿ

csœC

1 ((cs ª c) · (Pcs > 0)) · log (IoUc) (3.19)

The square root is necessary to prevent too large weights. Considering the class
obstacle for the label taxonomy in Figure 48 (Appendix B), the weight can become
greater than 30 ignoring leaf classes like pedestrian with a weight of one. Nevertheless,
the relationships between classes are not fully implemented yet, especially for the false
positive. In a hierarchical structure, the goal is that misclassifications are detected by
stopping the prediction at an earlier level. Currently, the network only gets punished for
classes at levels where it has predicted incorrectly. Deeper descendants that are selected
in succession are ignored although the network should classify all of them as false to
stop the prediction. In addition, rare classes can su�er under too deep predictions as
such false positives decrease the IoU score. The problem can be handled either by a top-
down approach considering the predictions of all descendants for the approximation of
the false positives’ depth, or by a bottom-up approach propagating misclassifications of
shallower levels to each descendant. The first method might not take the class imbalance
into account as falsely predicting truck is less crucial for the IoU score than caravan but
both are on the same level. In contrast, the bottom-up approach naturally deals with
the imbalance by adding the extra false positives to the IoU score of the predicted class.
Formally, the propagation for a class c is expressed by:

ÁFP c = FPc +
ÿ

vœV

ÿ

cªcp

Q

a
1
Yv,cp == 0

2
· “

(|P (cp,c)|≠1) ·
Ÿ

ckœP (cp,c)
Xv,ck

R

b (3.20)

P (c1, c2) constitutes the set of classes on the path from c1 to c2, and “ a weight decay to

63

3. Hierarchical Object Detection

regularize the influence of previous levels on the class’s false positives. For each ancestor
cp of c, the false positives are propagated by multiplying the probabilities of all classifiers
between both nodes where the label of cp is false (probability of 0). Note that no pixel is
considered more than once as the masks of

1
Yv,cp == 0

2
are exclusive. For instance, the

pixels for which (Yv,street == 0) is true do not overlap with those from (Yv,ground == 0)
as the first set is labeled as ignore (-1) if the ground truth does not contain the class
ground. “ should be equals or less than one as the major misclassifications are made
by a di�erent classifier. To clarify the application of the approach, the propagated false
positives ÁFP of the class road are calculated by:

ÁFP road =
ÿ

vœV

(Yv,road == 0) · Xv,road

+ (Yv,street == 0) · “ · Xv,street · Xv,road

+ (Yv,ground == 0) · “
2 · Xv,ground · Xv,street · Xv,road

(3.21)

The last two multiplication terms are the propagated false positives by street and
ground. If the network predicts road for a pixel labeled with sky or similar, the last term
of (Yv,ground == 0) is true and adds the misclassification to the false positive count of
road.

Implementing a similar approach for true positives is not as easy because if any clas-
sifier on the path from the root node to the class does not predict to be true, the
classification is not correct. The method for combining the predictions determines how
the network will try to optimize its predictions. A multiplication of all probabilities, as
it is applied for YOLO9000 [68], does not provide su�cient gradients and rewards. For
example, if the network predicts 4 out of 5 classifiers correctly, but the last close to 0,
the complete classification ends up in a probability of 0. Furthermore, a concatenation
of 5 classifiers each with a prediction of 0.7 leads to a combined probability of only
0.75 = 0.168 although the prediction probably is a true positive during the inference.
Nevertheless, the class relationships are already taken into account by the mean IoU
over all descendants as described in Equation 3.17. In the worst case, the true positives
of the ancestor and the descendant share no pixels at all although both have an IoU
score of 0.5. As the network constitutes a global classifier and all predictions influence
each other, it is improbable that such a worst case scenario happens.

In conclusion, the hierarchical label taxonomy can be integrated into the loss function
by using the mean Intersection over Union of all descendants for classes with children.
As it is fundamental that the network performs on classes with multiple descendants the
best, their loss is weighted by the number of active subclasses. The class relationships can
be implemented by propagating false positives from each ancestor to all its children. To
find the most suitable value for the decay parameter “, Section 4.2.2 reviews experiments
performed with di�erent settings of this approach.

64

3. Hierarchical Object Detection

3.4.3. Weighting IoU for rare classes

Although the IoU is invariant to class imbalances, it can only be determined for a single
batch and might miss out some rare classes. Furthermore, certain classes might be easier
to learn than others, and thus, the network should concentrate on the hard classes as
those provide the greatest chance for improvement. As presented in Section 3.2.3, a
moving average filter over the losses or probabilities can help to find the optimal weights
for a class set. However, the positive and negative predictions are weighted di�erently
to balance the examples for a single class. Within this section, the weight factor for
positive predictions is referred as – and the negative respectively as —, defined by:

– = MAF1
MAF0

, — = MAF0
MAF1

(3.22)

The IoU loss subsumes both label types into a single score. To weight the loss of
positive and negative predictions di�erently, the function has to be split into two parts.
By applying the logarithm laws, the loss of the IoU for a leaf class can be simplified by:

log(IoU) = log
3

TP

P + FP

4

= log(TP) ≠ log (P + FP)

∆ – · log (TP) ≠ — · log (P + FP)

(3.23)

Thus, the losses of positive and negative predictions can be calculated and weighted
independently. For classes with one or more descendant, the loss function is changed to:

log(IoU) = log
Q

a 1
M

·
ÿ

cs

TPcs

Pcs + FP ·
1

Pcs
P

2

R

b

= log
Q

a 1
M

·
ÿ

cs

TPcs

Pcs ·
1
1 + F P

P

2

R

b

= log
A

1
1 + F P

P

· 1
M

·
ÿ

cs

TPcs

Pcs

B

= log
A

1
M

·
ÿ

cs

TPcs

Pcs

B

≠ log
3

1 + FP

P

4

∆ – · log
Q

a
q

cs
–cs ·

1
T Pcs
Pcs

2

q
cs

–cs

R

b ≠ — · log
3

1 + FP

P

4

(3.24)

65

3. Hierarchical Object Detection

–c constitutes a label-dependent weight factor for the descendant c. As mentioned
earlier in Section 3.4.2, in this form it gets obvious that only the loss function for true
positives needs to handle the conditional IoUs, and the false positives are similarly cal-
culated as for a class without descendants. To be formally consistent with the definition
of the positive and negative loss function, the IoU score without subclasses is adapted
to the same function as a class with a single descendant:

log(IoU) = log (TP) ≠ log (P + FP)

= log (TP) ≠ log
3

1 + FP

P

4
≠ log (P)

= log
3

TP

P

4
≠ log

3
1 + FP

P

4
(3.25)

Label-dependent weight factors can also be introduced for false positives. The goal is
to detect common confusions over several layers, like sky to water, and weight the class
loss regarding to the mean performance on pixels assigned to certain labels. Therefore,
the formula for the false positives in Equation 3.14 is changed to:

FP =
ÿ

vœV

—Cv · Xv · (Yv == 0) (3.26)

The moving average filters measure the performance of each class. Still, the distri-
bution of a batch can significantly di�er from the whole dataset regarding which the
prediction should be optimized. Especially, if a batch contains a minimal number of
labels for a class, the true positive loss can easily blow up as the network might miss
out the few pixels. To prevent such great losses and stabilize the training, a minimal
number of labels is determined by the average amount in the training dataset. If a batch
contains less than half of the average number of labels, the true positives are filled up
with default predictions of 1 until the minimum label number is reached. Other default
values might also be possible, but as greater objects are more important for the IoU score
than small examples, a perfect prediction is implied ensuring stable training. Formally,
the label adjustment can be defined by:

Pmin = 1
2 · Pavg

P =
I

P P Ø Pmin

Pmin otherwise

TP =
I

TP P Ø Pmin

TP + (Pmin ≠ P) otherwise

(3.27)

The number of labels can also be adjusted for the false positives. As the desired per-
formance for the false positives of a class depends on the ratio of positive and negative

66

3. Hierarchical Object Detection

labels, the weight can be fitted to the batch distribution. Thus, the number of labels
for the false positive is regulated by the number of negative examples in a batch. Fur-
thermore, even if there are very few negative examples, the loss cannot blow up because
the gradients even decrease for a great number of false positives. The loss adaptation is
expressed by:

PF P = Pavg · N

Navg

∆ log (IoU) = – · log
3

TP

P

4
≠ — · log

3
1 + FP

PF P

4 (3.28)

However, there is still a drawback for rare classes when calculating the false positives
by adding up the probabilities for all labels. When considering the class animal, it has
only 61 positive examples per image in average compared to over 11,000 negatives (see
Table 7). Even a prediction of 0.01 for all negative examples results in an approximated
false positive score of 0.01 · 11, 282 = 112.82. This is nearly twice as high as the number
of positive labels and suggests an IoU score of lower than 0.4 although none of the
prediction might be a false positive. A reasonably lower prediction is due to the sigmoid
function hardly possible as the gradients decrease to 0 for such changes. To overcome this
problem, the false positives can be approximated by the distance between the prediction
for the labeled class and its siblings that should have a lower probability. If the distance
is lower than a certain threshold, the false positive is set to 0. Otherwise, the prediction
is counted as a false positive weighted by the size of the distance. For a threshold ”, the
new false positive approximation can be defined by:

FP =
ÿ

vœV

—Cv · (Yv == 0) · (max (Xv ≠ Xv,Cv, ≠”) + ”) (3.29)

Furthermore, the propagated false positives introduced in Equation 3.20 can also be
adjusted to the distance measure. The probability threshold that is used for determining
whether the prediction should go a level deeper or not is applied as a distance threshold
” for those classes that do not have a label. For the example of falsely predicting road
instead of sky, this means that the false positive for street and road is measured by
distance to the probability threshold, while road uses the prediction of sky.

A similar approach could be applied for true positives, but with a di�erent motivation.
From the perspective of the approximated IoU score, the gradients of a prediction of 0.1
are the same compared to those of 0.9 although the second is probably already a true
positive during inference. To focus on scores that need to be improved, the true positives
are approximated by the distance to the greatest probability of the class’s sibling. Similar
to the false positives, a threshold is defined that specifies the minimum distance over
which a prediction is considered as a full true positive and the loss is set to zero. Similar

67

3. Hierarchical Object Detection

to Equation 3.29, the distance-based true positives are defined by:

TP =
ÿ

vœV

(Yv == 1) ·
3

1 ≠ 1
1 + ”

·
3

max
3

max
cs ”=c

(Xv,cs) ≠ Xv, ≠”

4
+ ”

44
(3.30)

Besides, when training on the IoU score, it is essential that the batch represents the
class distribution as accurately as possible. Furthermore, the loss is invariant to the
number of pixels/examples, as only the proportion of true positives to positive labels
is taken into account (similar to false positives). However, some classes like caravan or
trailer have instances on only a few images so that some batches exclude rare classes
when selecting the images randomly. Thus, dividing the dataset into multiple subsets
as described in Section 3.2.1 is crucial for this task.

Overall, the Intersection over Union can be weighted in many di�erent ways to opti-
mize rare classes. To evaluate the e�ects of the proposed methods, Section 4.2.2 presents
experiments on di�erent parameter settings for the distance-based measures of Equa-
tion 3.29 and 3.30. The weighting of hard classes by moving average filters are used
in every experiment as well as the limitation of minimum labels. Both have shown to
stabilize the training and are essential for reasonable performance on an imbalanced
dataset.

68

4. Experiments

4. Experiments
To evaluate the proposed methods of Section 3, several experiments are implemented
in the context of this thesis. Therefore, the first subsection reviews the particular ex-
perimental setup including the network architecture and implementation details of the
approaches. Next, the results of the di�erent training techniques are presented and com-
pared to a flat classifier. The third subsection discusses the scalability of the hierarchical
class structure by comparing the results of three di�erent hierarchies. In the last part
of this section, the relevance of thresholds and uncertainty detection is explained.

4.1. Experimental setup
This section describes the settings that are used across all experiments. Therefore, the
first subsection reviews the network architecture, whereas the second part concentrates
on implementation details regarding the training.

4.1.1. Network architecture

The hierarchical classification is tested on the task of semantic segmentation. Therefore,
a fully convolutional network [57] is applied where the convolutional network consists of a
GoogLeNet-v1 Inception architecture [89]. As the resolution of images from Cityscapes
[12] and Mapillary Vistas [62] is much higher than from ImageNet [75] for which the
network is originally designed, a max pooling operation with two subsequent inception
modules is added to the end of the network, similarly to the approach of Uhrig et al [92].
Upscaling the features to a pixel-wise prediction is implemented by skip connections and
deconvolution operations, as proposed in [57].

For training, the network’s parameters are initialized by a pre-trained version on
ImageNet and afterwards fine-tuned on the task of semantic segmentation using the
described datasets of Section 3.2.1. To minimize the loss function, the Adam optimizer
[43] is applied to improve the network’s parameters after each iteration. The learning
rate is set to 4 · 10≠5 for all experiments, and a weight decay of 2 · 10≠6 is introduced to
regularize the range of the weights [27, 47]. Several augmentation methods are applied
to the input image that alternate the RGB appearance without significantly influencing
the labels, like, i.e. adding noise or flipping the image (labels are flipped accordingly).
Augmentation helps the network to generalize as it is trained to be invariant to small
changes [27]. However, as the color is a significant feature for special vehicles like police
cars, no augmentation method is applied that fundamentally changes the colors, like,
i.e. swapping the RGB channels.

4.1.2. Implementation details

The experiments are implemented using the TensorFlow framework [1] and executed on
NVIDIA V100 GPUs. When applying the Intersection over Union as loss function, it

69

4. Experiments

is important to train on a large number of images in parallel to accurately represent
the dataset distribution. Hence, a multi-GPU training is developed where images are
processed on di�erent GPUs but contributing to the same loss function. Each GPU
determines the approximated true and false positives for its images, and forward that
information to the CPU that combines the parameters of all GPUs. After the loss is
calculated, the gradients are estimated on each GPU separately but combined to a final
update of the network’s weights. For all experiments, a default configuration of 3 GPUs
is applied, each processing two images. Experiments with a single GPU achieve signifi-
cantly worse results (about 10% on mIoU), but also noticeably greater sizes (i.e. using
8 GPUs) have shown to improve less while increasing the time per iteration.

Furthermore, the resolution of the input is reduced to 1536◊768 pixels during training.
This enables training of 2 images on GPUs that only provide 12GB memory. The
reduction is performed by a random down-scaling and cropping to make use of the
whole image. Still, the network is evaluated on the original images of 2048 ◊ 1024 pixels
to compare the result to other approaches.

4.2. Hierarchical classifier for Semantic Segmentation
The hierarchical classification is evaluated on the task of semantic segmentation. The
performance is measured by the mean Intersection over Union and the depth-dependent
distance metric (see Section 3.3.2) of the 19 classes of the Cityscapes validation dataset.
As a baseline, a flat classifier is trained in a similar experimental setting presented in
the first subsection. Next, the various methods based on the metric loss function of
Section 3.4 are discussed. The final subsection presents the results on object attributes.

4.2.1. Baseline

To compare a hierarchical classifier with an ordinary flat version, both have to be trained
in a similar setting (network architecture, datasets, ...). Thus, a flat classifier is applied
to the leaf classes of the standard hierarchy of Figure 48. However, the attributes cannot
be converted so quickly as they are based on a multi-class approach and the flat classifier
predicts a single class per pixel. To train the network on the special classes, new leafs are
introduced that represent all possible combinations of the base class and the attribute
duty occurring in the dataset. Overall, the classifier is trained on 32 classes including
the 19 classes of the Cityscapes validation.

As a result, the network achieves a mean IoU score of 72.43%. The best recognized
class is road with a score of 97.76%, whereas the worst classes, rider and motorbike, are
detected with a IoU of approximately 54%. Also, the network performs poorly on rare
classes that are not considered for the Cityscapes evaluation. For instance, the classes
trailer and caravan achieve a score of only 5.38% and 11.06% respectively.

70

4. Experiments

4.2.2. Evaluation of metric loss function

Various methods for training a neural network on hierarchical classification for semantic
segmentation are proposed in Section 3. To test their capability, several experiments of
di�erent settings are implemented and performed.

The network is based on a hybrid approach of a global classifier and local classifiers per
node (see Section 3.1.2). As label taxonomy, the mid-size hierarchy with 48 classes is se-
lected providing examples of rare classes and the object attribute duty (see Appendix B,
Figure 48). Also, label-dependent moving average filters as described in Section 3.2.3
are applied to all experiments.

In a first experiment, the hierarchical classifier is trained on the binary cross entropy.
As described in Section 3.2.2, the cross-entropy is extended by a focal loss with the pa-
rameter setting of “ = 1 and – = 0.5. During inference, a class for all sets of descendants
need to be determined. To consider every single classification as equally important, the
loss is averaged over these sets independent to the number of labels as leaf classes are
less likely to occur frequently. For instance, the loss for the children of the class overpass
is equally scaled to the subclasses of the node ground. By applying this loss function,
the network achieves a mean IoU score of only 66.89%. The classifier performs poorly on
classes where the number of positive and negative examples is significantly imbalanced.
The class trailer, for example, has a IoU score of 0.0%.

In contrast, the metric loss function is developed to overcome such imbalances. How-
ever, applying this loss without any improvements proposed in Section 3.4.2 and 3.4.3,
the classifier performs worse on the first level of the hierarchy. Di�erent works have
shown that combining multiple loss functions can be beneficial when training a deep
neural network on various tasks [42, 6]. Thus, in further experiments, the metric loss
function is simultaneously applied with a binary cross entropy. To equally consider the
losses independently to their scale, the method of uncertainty weighting [42] is used that
determines the weights of each loss based on its scale and noise magnitude. Besides, the
MAF filters are shared among all loss functions.

In further experiments, various parameter settings, mostly for the metric loss function
are tested for the combination of both losses. To structure and name the experiments,
the following abbreviations are used:

H Identifying a hierarchical class structure.

IoU The default setting with the basic metric loss function and binary cross entropy as
described before.

NWB - Non-weighted binary cross entropy. The loss is not averaged over the di�erent
sets of descendants, but is the mean over all pixels. Thus, the loss of a class
depends on its number of labels. MAF weights are still applied.

71

4. Experiments

WBL For the metric loss function, the classes are weighted by number of active leafs
(see Section 3.4.2, Equation 3.19).

NL Combining both NWB and WBL

FD The metric loss function is extended by approximating the false positives by the
distance to the prediction of correct class. The subsequent number constitutes the
value of ”F P (see Section 3.4.3, Equation 3.29).

C False positives are propagated to their descendants (C for contribution). The subse-
quent number constitutes the decay factor “ (see Section 3.4.2, Equation 3.20).

TD Similarly to FD, the true positives are approximated by the distance to the great-
est false prediction. The subsequent number constitutes the value of ”T P (see
Section 3.4.3, Equation 3.30).

The experiments are evaluated on the IoU score (IoUexact) and the depth-dependent
distance metric where the contributions of false positives and false negatives are consid-
ered for the IoU (IoUcont). The performances of di�erent experiments are summarized
in the following table:

Abbreviation NWB WBL ”F P “ ”T P IoUexact IoUcont

Baseline 72.43% 72.88%

H_IoU - - - 64.81% 66.89%

H_NWB X - - - 68.27% 70.06%

H_WBL X - - - 68.14% 70.09%

H_NL X X - - - 72.01% 73.70%

H_NL_FD075 X X 0.75 - - 72.37% 74.20%

H_NL_FD05 X X 0.5 - - 72.95% 74.75%

H_NL_FD05_C1 X X 0.5 1.0 - 71.63% 74.59%

H_NL_FD05_C05 X X 0.5 0.5 - 73.98% 76.25%

H_NL_FD075_C025 X X 0.75 0.25 - 74.24% 76.48%

H_NL_FD075_C025_TD075 X X 0.75 0.25 0.75 73.95% 76.26%

H_NL_FD05_C05_TD075 X X 0.5 0.5 0.75 74.05% 76.34%

Table 4: The table shows the achieved results for di�erent parameter settings. The
baseline of the flat classifier is listed at the top. For the hierarchical classifiers,
the additional rows represent the applied parameters. The highest scores are
highlighted in bold font.

72

4. Experiments

Combing both metric loss function and binary cross entropy seem to have an adverse
e�ect first. The score is worse compared to the training of purely the cross entropy.
However, when adding the weighting by active leafs (H_WBL) or changing the binary
cross entropy to a non-weighted version (H_NWB), the exact and depth-dependent IoU
score significantly increases by more than 3%. Both methods weight the losses for classes
on a shallower hierarchy level higher, as those frequently occur in images and the detec-
tion of all descendants dependent on the ancestor. Moreover, when WBL and NWB are
simultaneously used (H_NL), the network again experiences a substantial improvement
of 3.7% for both scores almost reaching the score of the baseline.

Next, the variations of the metric loss function proposed in Section 3.4 are applied.
Approximating the false positives by the distance to correct labeled predictions should
initially help to reduce the false positives for classes with a large label imbalance. The
parameter ”F P constitutes the distance over which a prediction is ignored. For a value
of ”F P = 0.75 (H_NL_FD075), the network slightly performs better. However, when
using a lower value of ”F P = 0.5 (H_NL_FD05), the performance considerably increases
to an IoU score of 72.95%. Even smaller values are not considered, as experiments have
shown that the loss of false positives would be too small compared to the true positives
to get a stable prediction.

Another proposed change of the metric loss function is propagating false positives from
a node to all its descendants. When using a decay factor of “ = 1 (H_NL_FD05_C1)
so that the losses for misclassifications at a higher level are not reduced for child nodes,
the exact IoU score drops by 1.3%. However, when considering the depth-dependent
distance metric, the score almost stays the same compared to the experiment prov-
ing that the predictions of the network are close to the actual label. A more in-depth
analysis shows that a network trained without propagating the false positives to de-
scendants is less likely to stop at an inner node. When weighing the false positives
too high, the network only predicts a leaf class if it is very confident. Reducing the
decay factor to “ = 0.5 (H_NL_FD05_C05) significantly outperforms the previous
experiment H_NL_FD05 in both exact IoU score and depth-dependent contributions.
Still, the number of false positives is increased by applying the propagation. Using a
smaller decay factor of “ = 0.25 but a greater distance of ”F P = 0.75 reduces the false
positives for rare classes where the ancestor frequently occurs. The corresponding ex-
periment H_NL_FD075_C025 has a slightly better score of 74.24% for the exact IoU
and 76.48% for the depth-dependent distance metric. The results of the di�erent decay
factors can also be visually compared, as illustrated in Figure 38.

Applying the distance based loss for true positives shows no considerable improve-
ments and has slightly worse scores than H_NL_FD075_C025. In the experiment
H_NL_FD05_C05_TD075, setting both “ and ”F P to 0.5 indicates a 0.1% higher score
for both metrics than the similar approach with the values 0.25 and 0.75. However, the
scores for every experiment are based on a single training, so that several random choices
like the order of the training images can also cause small noise in the results.

73

4. Experiments

(a) “ = 0 (b) “ = 1 (c) “ = 0.25

Figure 38: (a) Networks trained without propagating the false positives throughout the
hierarchy rarely predict inner nodes. Thus, the boundaries between the bicy-
clist and the bicycle are inaccurate causing misclassifications of both classes.
(b) High values of “ cause the network to stay at shallow levels of the hier-
archy. The bicyclist is classified as rider, whereas the space in between the
person and the bicycle is assigned to vulnerable road user. (c) If the decay
factor is decreased, predictions more often end up in lead nodes, as the rider
is recognized as bicyclist. For the pixels near the boundary of both classes,
the network predicts their first common ancestor obstacle being even more
accurate than the network trained with a high value of “.

Overall, the hierarchical classifier shows a significant improvement compared to the
flat baseline. The class for which the score increased the most is train. The performance
of the baseline is about 56.82% whereas the best hierarchical classifier of experiment
H_NL_FD075_C025 achieves a score of 73.69%. The reason for that might be the
hierarchical class structure as train is a subclass of large vehicle and stand out from
other child nodes by having significant characteristics like driving on rails. Besides, the
score of the class rider is also noticeably improved by 7%. Most common classes like
passenger-car show a similar score to the baseline as they are already recognized well.

4.2.3. Evaluation of object attributes

Attributes of objects are introduced in the hierarchy by virtual edges that can be con-
nected to multiple nodes. To evaluate the performance of this approach, the attribute
duty is included in the standard class structure of Figure 48 for several vehicles and hu-
mans. The training is based on a small, internal dataset of school buses and a relabeled
subset of Cityscapes as described in Section 3.2.1. Due to the lack of labeled images, the
evaluation is performed on a small set of coarse-labeled examples so that the results do
not accurately reflect the detection quality. The Cityscapes validation set of 500 images
constitute the instances of objects that do not have any particular duty. Furthermore,
the visualization of the predictions can give a first glance at how good the network has
learned to recognize the special vehicles.

74

4. Experiments

Overall, the results prove that the most natural duty to detect is school. The net-
work achieves an IoU score of about 98% on the validation dataset that is similar to the
training examples. However, as the images of school buses are recorded with a di�erent
camera and location than all other images in the dataset, one might expect that the
classifier has overfitted on this specific setting. Testing the detections on other record-
ings like Figure 39d, show that the network can recognize school buses in general.

(a) Police car (b) Ambulance

(c) Fire truck (d) School bus

Figure 39: (a) - (d) Examples of recognized vehicles with special duty. The predictions
are visualized by combining the base class with the color of the attribute.
Thus, a police car is shown in a light blue and school buses in turquoise. The
first image is from the Cityscapes validation dataset, the other three from
internal recordings.

Objects with other duties are detected slightly worse. Police cars constitute the groups
on which the network performs second best with a score of approximately 80%. Exam-
ples like in Figure 39a are detected accurately independent to the specific class of the
vehicle. With 117 images, the class police also has the most training examples compared
to the other duties in the Cityscapes Special dataset (see Section 3.2.1). Especially the
class fire su�ers under the lack of variety in its 20 images. Whereas the fire truck in
Figure 39c is detected quite well, vans or cars with the same duty are mostly misclassi-
fied as medical because the network has never seen such examples. Thus, the IoU score
is only between 40% and 50%. Ambulances as in Figure 39b have a much better recall,
but the false positives on fire significantly influence their performance on the IoU.

75

4. Experiments

In conclusion, the approach of introducing object attributes within the class hierarchy
shows great potential. When comparing the results to the flat classifier of Section 4.2.1,
the hierarchical approach noticeably detects more special objects with the correct under-
lying base class like medical car versus medical truck. The greatest, remaining challenges
derive from the dataset. The lack of examples can also be noticed for the classes police
and medical, because most vehicles are recorded from a greater distance. Also, unseen
vehicles that have a di�erent duty like tow trucks might be misclassified. The problems
are summarized in Figure 40.

(a) Large vehicles (b) Unseen duty

Figure 40: (a) The police car on the left is recognized as passenger car without duty.
Large objects assigned to police and medical are less likely to be detected as
the Cityscapes Special dataset mostly contains examples that are far away
from the ego vehicle. (b) A siren is typical for many vehicles with a special
duty. On the image from the Cityscapes validation dataset, the car of a tow
service is mostly classified as normal, but near to the siren the prediction
switches to medical.

Nevertheless, the dataset of school buses has proved that it is also possible to train
on images where solely the desired object is labeled significantly simplifying the labeling
task. Thus, extending the dataset by such examples will probably improve the perfor-
mance to su�cient quality.

4.3. Testing scalability of hierarchical classification
A hierarchical class structure has the benefit that it can easily be expanded. However,
most classifiers perform worse if several classes are added to the task. To test whether
the performance also significantly decreases if a hierarchical classification is used, this
section reviews experiments on a smaller and larger hierarchy which are described in
Section 3.1.4 and visualized in Appendix B. The di�erent level of detail of the three
hierarchies is illustrated in Figure 41.

76

4. Experiments

(a) Small-scale hierarchy

(b) Standard hierarchy

(c) Large-scale hierarchy

Figure 41: (a) The small-scale hierarchy solely contains the 19 Cityscapes classes with
nine inner nodes. Thus, bicyclist and motorcyclist are both recognized as
rider, and no object attributes are detected. Nevertheless, with a mean
IoU score of 75.99%, it constitutes the best performing configuration on
Cityscapes. (c) The standard hierarchy extends the small version by the
object attribute duty and six additional classes from Mapillary Vistas like
distinguishing between bicyclist and motorcyclist. The police car on the left
image is therefore recognized with its corresponding duty. (c) The deepest
level of detail provides the large-scale hierarchy. Especially the class road is
extended by adding six new leaf classes and two inner nodes as descendants.
On the example images, the subclasses lane markings general (white) and
manholes (dark blue) can be seen. Also, curbs are detected as a subclass of
sidewalk (visualized in grey).

77

4. Experiments

4.3.1. Small Cityscapes hierarchy

The small-scaled hierarchy is based on the 19 classes on which Cityscapes is evaluated,
and nine inner nodes to form the hierarchical class structure. With 28 classes in sum-
mary, it has approximately half as many nodes as the hierarchy used for experiments
in Section 4.2.2. The settings regarding network architecture, datasets and training
parameters, stay the same for experiments with the smaller hierarchy. The metric loss
function is designed as constituted in best performing experiment H_NL_FD075_C025.
Figure 41a shows two example predictions of this experiment.

The small hierarchy outperforms all previous experiments and achieves a mean IoU
score of 75.99%. The most significant improvements appear in subclasses of large vehicle.
The score of train rises by 2%, truck by 3% and bus by 4.5%. However, when comparing
the IoU value of the ancestor, the score only slightly improves by 0.8%. Hence, the rare
classes caravan and trailer which are not included in the small hierarchy, seem to have
a significant e�ect on the performance of its sibling nodes. This is supported by the
fact that the contribution of false positives and false negatives is noticeably higher for
descendants in the standard hierarchy. A higher contribution indicates that the misclas-
sification occurs on a deeper level, or the prediction stops at an ancestor. Thus, when
adding rare classes, the network is more likely to create uncertain predictions, also for
common classes.

Another significant improvement can be experienced for the class wall for which the
exact IoU score is increased from 52.14% to 57.98%. This might derive from the addi-
tional inner node barrier that summarizes wall and fence. In the standard hierarchy,
both classes are siblings of the frequently appearing class building introducing a strong
imbalance of positive and negative examples. The additional inner node stabilizes the
ratio as it subsumes both labels of fence and wall to compare to building.

However, there are also some classes that are less a�ected by the alternated class
structure. All nodes on the first level have an almost unchanged score with a maximum
di�erence of 0.1%. Moreover, classes like passenger car and building on which the
standard hierarchy already achieved su�cient results of more than 90% are only slightly
improved. One reason for this is that it is even harder to increase the absolute score for
such classes, as its false positives are a�ected by the predictions of other classes, and the
ground truth also contains some mistakes [12]. However, another possible factor is that
the method weighting by active leafs of the IoU score is significantly influenced by the
hierarchical structure. Thus, the same classifiers might be weighted di�erently in the
small and standard hierarchy.

4.3.2. Large-scale Mapillary hierarchy

Mapillary Vistas is based on a label hierarchy with more than 60 classes. To use this
detailed information, the standard hierarchy is extended by several subclasses. For in-

78

4. Experiments

stance, the class road is divided into marking, hole, bike lane and car lane. Furthermore,
markings and holes have each two additional descendants. To test whether the net-
work can handle several rare classes at the same time, classes of small objects with a
rectangular shape are subsumed in a new infrastructure type, called box infrastructure.
Overall, the large-scale hierarchy consists of 69 classes. Note that a hierarchical pre-
diction of over 9000 classes like in [68] is not practicable for semantic segmentation on
full-resolution images of Cityscapes, as this results in an output of several Gigabytes
size. For experiments, the same settings as for the small and standard hierarchy are
applied, but the number of parallel GPUs is increased to 8. The time needed for a full
training considerably rises as more classes need to be evaluated while using multiple
GPUs synchronously additionally slows down. Thus, the training was stopped after
500,000 iterations although the performance might still slightly improve afterwards.

Using the large-scale hierarchy, the network achieves a mean IoU score of 72.40% on
Cityscapes. Example predictions are illustrated in Figure 41c. The network performs
similarly to the baseline of the flat classifier but recognizes about 30 more classes. How-
ever, compared to the standard hierarchy, the score drops by 1.76%. Some significant
drawbacks include a 3.4% smaller value for the class tra�c light. This can be traced
back to the shifted weights due to the additional class ad sign as well as the two new
descendants of tra�c sign. Also, the IoU score of the class rider decreases by 3% which
might also be related to the enlarged tree imbalance. Compared to the standard hier-
archy, the large-scale version mainly includes more classes for infrastructure and street.
Other classes might be discriminated due to the method of weighting by active leafs.

Besides, the new classes added to the hierarchy are detected quite reasonably. For
instance, the network achieves an IoU score of over 90% on the class marking. Fur-
thermore, rare classes like animal and buggy have a much lower score of 15% to 20%.
Regarding the depth-dependent distance metric, contributions for close misclassifiations
show significant improvements for the scores of uncommon classes. Trailer has an exact
IoU score of only 12.72%, but is nearly doubled when taking the contributions into ac-
count although a prediction of passenger car is not considered to be close.

In conclusion, the larger the hierarchy is, the more uncertain predictions the network
might generate, especially if several rare classes are included. The experiment proves
that it is possible to train a classifier on a large number of categories simultaneously when
using multiple datasets with di�erent label sets. A drop of 1% to 2% regarding the IoU
score can almost be neglected when considering that 30 new object classes are added.
This method can be helpful to build up a modular dataset where new classes can easily
be included by providing su�cient examples with the required level of detail. Other,
already labeled data does not need to be reviewed if the new class can be expressed by
a is-a relationship or is ignored in the previous datasets.

79

4. Experiments

4.4. Threshold adaptation
A critical aspect of hierarchical classification is that uncertain predictions can end at
any inner node of the class structure. The most common approach to detect uncertainty
is by specifying a threshold over which the confidence of a prediction needs to be [78].
Finding the optimal thresholds for each classifier by hand is hardly possible as it depends
on how the network has optimized its internal parameters. To automate the process, a
test dataset is used which is processed by the network. Based on these predictions, the
thresholds are optimized to gain the best performance for each classifier. This technique
referred to as threshold adaptation in the context of the thesis, is further presented
and applied in the first subsection. In the second part, more complex approaches are
discussed that take the class relationships into account.

4.4.1. Evaluating prediction distribution

Automatically determining the optimal set of thresholds to detect uncertain predictions
is the aim of the threshold adaptation. Firstly, the network processes a set of images for
which the ground truth is known. The validation datasets of Cityscapes and Mapillary
Vistas are used as those constitute new, unseen images. For every classifier, a distribu-
tion of the predicted confidences on the dataset is determined whereas it is distinguished
between examples for which the label is positive or negative. Visualizations of such dis-
tributions are shown in Figure 42.

(a) Class infrastructure (b) Class caravan

Figure 42: (a) - (b) The bar charts summarize the distribution of the network’s pre-
dictions for the classes infrastructure and caravan. The examples that are
labeled positive are visualized in red and negatives in blue. The x-axis shows
the probability that is predicted by the network in the range of 0 to 1 with
a step size of 0.01. The height of a bar constitutes the number of examples
that are assigned to a certain probability in a logarithm scale.

80

4. Experiments

The optimal distribution would be where the predictions for all positive examples are
1.0 while all negatives are assigned to 0.0. As the network occasionally misclassifies an
example, the predictions of both subsets overlap and are spread over the probabilities.
When applying a threshold to this distribution, the confusion matrix parameters for
the classifier performance can be visually determined. All values that are assigned to a
negative label (blue) and are smaller than the thresholds (being left to the value) consti-
tute the true negatives. The false negatives are therefore the values with positive labels
on the left. The values greater than the threshold (being right to the value) split into
true positive if the assigned label is positive, and false positives for those with negative
labels. As the metric for semantic segmentation relies on the Intersection over Union,
the measure is also applied here for various thresholds. The threshold which optimizes
the IoU score is chosen as the final threshold of the classifier. For instance, the optimal
value for the distribution of the classifier infrastructure in Figure 42a is about 0.45.

However, the number of examples that a classifier needs to categorize depends on its
ancestor. If the parent node assigns a lower probability than the threshold to a pixel,
then the prediction of the descendant can be ignored. Thus, the thresholds are deter-
mined in a top-down order of the hierarchy starting with the nodes on the first level.
After i.e. the threshold for obstacle is determined, only the predictions where the prob-
ability of obstacle is actually greater than the specified threshold are used to set up the
distribution of its child nodes nature and vehicle. So, all true and false negatives of a
node are ignored for the threshold adaptation of its descendants as the predictions of
those are not considered during inference if the ancestor predicts false.

For the experiments in Section 4.2.2, a default threshold of 0.5 for all classifiers is
applied. When applying the threshold adaptation on the network of the experiment
(0027), the IoU score is improved from 74.24% to 74.73% and the depth-dependent
metric from 76.48% to 77.22% on Cityscapes validation. Especially the score of rare
classes like caravan and fire climbs by 20% to 30%. The increase can be mainly traced
back to the reduction of false positives that are less likely to occur in leaf classes. A
comparison of predictions before and after applying the threshold adaptation is shown
in Figure 43. However, the validation and the threshold adaptation are both performed
on the Cityscapes validation dataset so that the thresholds are specifically optimized for
this dataset. Experiments using, i.e. Mapillary Vistas for the threshold adaptation have
shown moderate success as the images significantly di�er from Cityscapes. Thus, the
optimal solution would be to have another subset of Cityscapes that is exclusive to the
validation set to perform the threshold adaptation on.

81

4. Experiments

(a) Prediction with default thresholds (b) Prediction after threshold adaptation

(c) Prediction with default thresholds (d) Prediction after threshold adaptation

Figure 43: (a) - (b) The threshold adaptation helps to distinguish between uncertain
and confident predictions. The space between the rider and the bicycle is
previously classified as vulnerable road user, but changed to obstacle by
applying the adjusted thresholds. However, the part of the bus near to the
rider is assigned to large vehicle instead of staying at bus. (c) - (d) For
the glass facade on the right, no leaf class is clearly specified but it is a
infrastructure with horizontal alignment. By adapting the thresholds, the
predictions of wall and fence are partially moved to its ancestor elongated
infrastructure that might fit the best.

4.4.2. Class correlations

When applying local classifiers for each node, the predicted probabilities of sibling classes
are independent. Thus, multiple nodes can simultaneously have a score which is greater
than the specified threshold. A common method to select a class in such a situation
is taking the node with the highest probability [17]. But especially rare classes have
very low thresholds of i.e. 0.15 for fire whereas for its sibling node normal a threshold
of 0.9 is specified. Therefore, a prediction of 0.9 from the classifier fire might be more
informative than the same from normal. To check this hypothesis, the correlation of
sibling classes based on their predictions is examined here.

Similar to the threshold adaptation, the network is evaluated on a validation dataset,
and its predictions are plotted in a bar chart. However, the probabilities are shown re-
garding the predictions of a sibling node. The corresponding two-dimensional diagrams
illustrate the correlation between the predictions of both classifiers (see Figure 44).

82

4. Experiments

(a) Road vs. sidewalk (b) Wall vs. fence

Figure 44: The two-dimensional bar charts visualize the distribution of predictions for
two sibling nodes. The classifiers are evaluated on examples where the first
mentioned class is assigned to a positive label. The x- and y-axis illustrate
the predicted probability of both classes, so that a prediction of 1.0 for the
correct class and 0.0 for the sibling is ordered in the bottom right corner.
The color of the data points determines how often the combination of the
class probabilities occurs (legend on the right). White spaces constitute no
occurrence at all. (a) The diagrams shows the predicted probabilities of
the classes road and sidewalk for positive examples of road. Comparing the
predictions of both sibling nodes manifests that although the classifiers are
trained independently, the correlation within the network typically leads to
a prediction where the sum of the probabilities of both classes is close to 1.
Most pixels are correctly classified shown in the bottom right corner. (b)
The predictions of the classes wall and fence for positive examples of wall are
analyzed in the diagram on the right. Both classifiers seem to be independent
as sometimes wall and fence predict a high score close to 1 simultaneously
(upper right corner). Still, the main proportion of the examples is correctly
classified as wall while the classifier fence predicts a low score.

When considering a class that has a single sibling, it gets obvious that one classifier
mainly learns to invert the other. Figure 44a illustrates the chart for the classes road and
sidewalk for which di�erent optimal thresholds are determined (0.6 and 0.3 respectively).
Most data points are close to the diagonal between the upper left and bottom right cor-
ner where the sum of both predictions is 1. Although both classifiers are independently
trained, they behave like a softmax function is applied to the network’s output. The
chart for the examples with positive labels of the class sidewalk is very similar to the
chart for road.

Other classes that have more than one sibling show di�erent behavior. In Figure 44b,
the class wall and fence are compared. The chart proves that for some data points, both

83

4. Experiments

classifiers predict a high score close to 1. However, the chart for the positive examples of
fence shows similar data points so that no clear decision can be made to which class the
predictions belong. Furthermore, experiments with di�erent treatments of such cases
have proved that in the current setting, selecting the classifier with the highest proba-
bility achieves the best results.

Nevertheless, next to applying thresholds on the predictions, there are also more com-
plex approaches to find the path through the class hierarchy [5, 17, 94]. Mostly, they are
based on two ideas: positive predictions of a node influences all its ancestors, whereas
descendants consider negative predictions of their parent nodes. To see how the class
selections might change by using such approaches, Figure 45 visualizes an example where
the prediction stopped at the inner node obstacle or infrastructure for chairs that belong
to the class bench. The parent class box infrastructure predicts a probability that is
below the specified threshold although the classifier bench has high confidence on that
pixels. Still, other leaf classes like building and fence have similar predictions. Hence, by
considering the probabilities of the descendants for each node, both box infrastructure
and elongated infrastructure would increase their scores whereas the second has a higher
probability for multiple child nodes. Probably, either building or fence would be selected
as the improved prediction still missing the correct class bench. Also for other examples,
the classifiers seem to predict random scores if the ancestor has a very low probability.

In conclusion, selecting the correct class within the hierarchy remains a challenging
task. Changes at this part of the inference have considerable influence on the network’s
performance and are therefore very important. However, the training might have to be
adjusted so that classifiers of nodes in a di�erent subtree of the label are not ignored,
but pushed to be 0. Also, dropping out classes during training to introduce labels of
inner nodes where all descendants are 0 and not ignored, can help the network to learn
uncertainty.

84

4. Experiments

(a) Original test image (b) Classifier box infrastructure

(c) Classifier bench (d) Classifier box infrastructure

(e) Classifier building (f) Classifier fence

Figure 45: (a) The test image of Cityscapes [12] contains people sitting on chairs. In
the label policy of Mapillary Vistas, these objects belong to the class bench.
(b) The network is uncertain what class the chairs belong to and predicts
obstacle or infrastructure. Color enconding according to Figure 49. (c) - (f)
The predictions of the classifiers are overlayed on the test image. The color
intensity specifies the confidence of the classifier. The chairs are recognized
on the leaf class bench, but its ancestor box infrastructure has a low score over
the whole image patch. However, also other leaf classes show high confidence
like building and fence.

85

5. Outlook

5. Outlook
Hierarchical classification has shown great success for the task of semantic segmentation.
Compared to flat classifiers, networks trained on hierarchical class structures enable un-
certain predictions while being as specific as possible. Also, they outperform flat versions
on standard metrics like the Intersection over Union. This performance is facilitated by
the extensive research on the training methods proposed in Section 3 that consider class
relationships and dataset imbalances for the loss function. Nevertheless, this thesis only
constitutes a first step in the vast, promising field of hierarchical classification for com-
puter vision in the context of autonomous driving. There are many open challenges, but
also new possibilities that are enabled by the concept of a hierarchy. In this section, five
of these topics should be discussed to show possible future work.

Dataset modularity One of the significant benefits of a hierarchical class structure is
its modularity. New classes can be added as subclasses or attributes without requiring
that existing datasets are relabeled. This enables to build a modular dataset that con-
sists of multiple subsets each containing di�erent labels. For example, to detect whether
a car has the turn signal activated or not, it is su�cient for the hierarchy to provide a
small dataset of objects with di�erent states of the turn signal. Previous datasets do not
need to be changed although they also include objects that possess this attribute. More-
over, the additional classes might either be learned by a dataset similar to the school
bus where only the regarded object is labeled, or an existing dataset is expanded by this
information similarly to Cityscapes Special. This reduced the label time enormously
without showing any apparent drawbacks.

Once the network is trained, it can detect all classes independent of which dataset
the image comes from. If the network’s performance is good enough, it can be used to
relabel existing data with subclasses, like a network trained on the large-scale hierarchy
can recognize lane markings and curbs in Cityscapes. For this task, a more complex
network architecture than the GoogLeNet is necessary as the accuracy is much more
critical than the runtime. One of the leading models on the Cityscapes Benchmark [13]
is DeepLabv3+ [9] which applies a deeper, modified version of the Xception network
[11]. In first experiments, the DeepLab model achieved better results on the large-scale
hierarchy than the GoogLeNet based on the small-scale class structure. Thus, imple-
menting such a model can help to generate more detailed labels on high-level datasets
and use these to train shallower networks like the GoogLeNet with more examples.

However, there are also some limitations. When combining multiple, heterogeneous
datasets with di�erent annotation types, it is essential that the label definitions fit for
each class. This is not always the case for the datasets Cityscapes [12] and Mapillary
Vistas [62]. For instance, the class rail track includes in Mapillary Vistas the tracks
which are embedded in a conventional roadblock [63]. In contrast, Cityscapes only con-
siders rail tracks that are not drivable by cars. Otherwise, the part of the ground is

86

5. Outlook

labeled as road. Training on both datasets in parallel probably causes a high loss as
the same image would be labeled di�erently in Cityscapes and Mapillary Vistas. This
is why the class rail track is excluded from the deployed hierarchies in Section 3.1.4.
Alternatively, the class can also be ignored in one of the datasets having the drawback
of losing many examples for the class. Thus, if such a class is relevant for autonomous
driving and a single dataset provides few examples, there must be developed a technique
for handling these inconsistencies to use all labels.

Hierarchical metric Reviewing the metrics for hierarchical classification, the depth-
dependent distance metric might not be the best choice. The accepted distance, as
well as the edges’ weights, are handcrafted parameters. Selecting di�erent values sig-
nificantly influences the scores, so that only networks evaluated on the same parameter
setting can be fairly compared. Furthermore, the decision of which distance between
prediction and ground truth is acceptable can rarely be answered objectively. For the
task of autonomous driving, this parameter might be determined by an expert who de-
fines a value based on extensive research. Another challenge is that an edge’s weight
cannot be solely determined by its depth. For example, in case of the large-scale hier-
archy, a confusion of trash bin and mailbox is assigned to the same distance as bus and
truck although the semantic similarity might di�er. In contrast, a metric purely resting
on semantics is also not practicable as deeper classes require more correct classifications
and are therefore more di�cult to predict than shallower nodes.

Besides, the metric should be suitable to compare hierarchies for the same leaf nodes
but di�erent inner structures. The benefit of a fine-grained hierarchy is that the net-
work can localize an uncertain prediction as specific as possible. Still, more internal
nodes require more classifiers that need to be trained, increasing the complexity of the
network. Overall, many challenges are remaining for the metric. When evaluating a
hierarchical classifier, it has to be considered how valuable a prediction of an ancestor
or a sibling is. This might be specific to the application but needs to be scalable as well.
The importance of a metric should not be neglected as, without an evaluation method, it
can not be determined how a classifier performs and whether a new approach improves
the predictions or not.

Optimization techniques for rare classes One of the critical aspects of this thesis is
to focus on classes that do not occur frequently. Therefore, various methods are devel-
oped and applied including a new weighting technique based on moving average filters
(see Section 3.2.3) and a metric loss function of the Intersection over Union (see Sec-
tion 3.4). Even if this improved the training, the performance on very rare classes often
is much worse than on frequent categories. Currently, the moving average filters are used
to compare the scores of positive and negative examples for each class independently.
However, to focus on rare classes, the weight factors can be determined by considering

87

5. Outlook

the mean predictions of other classes. Two problems arise from this idea that need to
be handled. First of all, the performance of shallower nodes with several subnodes is
more crucial than for a leaf node. Although applying the method of weighting by ac-
tive leafs ensures a higher default weight for parent classes, the values provided by the
moving average filters can be much greater exceeding the previous weights. Further-
more, the mean prediction does not always give a reasonable estimation of the classifier
performance. During validation, the measure is the Intersection over Union. Thus, the
discrete number of false and true positives can be counted on each training batch and
used as input for the moving average filters. First experiments have shown that such
weights can almost explode for rare classes. For instance, the class animal is assigned
to a negative weight of over 200 in the first thousand iterations and slowly decreases.
Even reducing high weights by applying the square root resulted in significantly worse
performances on both the 19 Cityscapes and other rare classes. Thus, future work has
to deal with the development of an improved weighting method that approximates the
evaluation performance better than a simple mean prediction.

Directed Acyclic Graphs The proposed methods for hierarchical classification in Sec-
tion 3 focus on the application on tree class structures. However, by allowing multiple
parents for a node, more complex relationships can be implemented. The classes na-
ture and terrain share significant features but di�er in the first level of the hierarchy so
that both are located in completely di�erent subtrees of the class structure. Also, when
looking at the predictions of the classifiers, both have a high score on the same pixels.
Thus, combining the classes into a single node natural having the ancestors ground and
obstacle reduces the size of the hierarchy and simplifies the learning process. In this
case, only one of the parent nodes can be correct. In contrast, directed acyclic graphs
can also be created where the right ancestor is not specified. An amphibian vehicle
simultaneously is a boat and car, but the network might decide which ancestor it selects.

Especially for those type of DAGs, evaluating the classifier is more di�cult. Multiple
paths of di�erent length might lead to the correct class. Hence, the distance between
prediction and ground truth is not explicitly specified and represents another challenge
for the hierarchical metric. Furthermore, the loss function needs to be reviewed when
the correct ancestor is not stated. When an amphibian vehicle is driving on the road,
the network probably classifies it as a ground vehicle and neglects the second ancestor
boat. The prediction would be reversed if the amphibian occurs swimming. Thus, there
might be a better training method than optimizing the network to predict a high score
for all ancestors of a node. Developing such a technique should be addressed by future
work if more complex class structures than a tree are applied.

Open world problem One of the hardest, remaining challenge is how to learn to be
uncertain if an object is detected that does not fit to any known leaf class. Unknown
objects are not covered by the training dataset and are therefore out of the represented

88

5. Outlook

distribution. In the context of autonomous driving, such situations can frequently occur.
For instance, existing datasets like Cityscapes [12] and Mapillary Vistas [62] already in-
clude some objects that could not be unambiguously assigned to a predefined class (see
Figure 46). Still, the detection system needs to handle unknown objects by providing
the most specific information on which it is certain.

(a) Train on street (b) Electric wheelchair

Figure 46: (a) In Cityscapes, a train on tires is labeled as a bus. Still, the bicycle
taxi in the background constitutes a ridable vehicle, but significantly di�ers
from other bikes. (b) An electric wheelchair for elder persons is recorded in
Mapillary Vistas. However, the vehicle is neither a motorcycle nor a bicycle
as it probably drives much slower and behaves di�erently.

Typically, deep neural networks are highly confident in their predictions regardless
of the example being in- or out-of-distribution [33, 51]. However, hierarchical classifiers
have the benefit that they can predict the closest parent class if the classifier is uncertain
about the object category. Experiments of Section 4 have shown that adapted thresholds
and hierarchical loss functions can push the network to make use of uncertainty.

Nevertheless, there also are more advanced methods like the Dual Accuracy Trade-o�
Search (DARTS) [16] or leaving-one-out [52] to explicitly train uncertain predictions
and/or to detect novel objects. A crucial aspect of training this behavior is finding the
best trade-o� between accuracy and specificity of the predictions. If the network only
selects classes with very high confidence, the inference path stops at a shallow level so
that the number of false positives of deeper classes is reduced, but the predictions are
very unspecific. The best trade-o� might be defined by the user, or can also be learned
during training.

Due to the time limitation, approaches for dealing with novel objects have not been
tested for the application of understanding urban street scenes yet. As Mapillary Vistas
already supplies some labels for out-of-distribution examples, first experiments might
be implemented on the classes other vehicle and other rider. Novelty detection extends
hierarchical classifiers by the possibility to solve the open world problem dealing with
all possible objects that can occur in front of an autonomous vehicle.

89

6. Conclusion

6. Conclusion
Understanding complex urban street scenes is a challenging task for autonomous driving.
Mostly, convolutional neural networks are applied to process camera images and localize
various objects including pedestrians and other vehicles. One conventional method for
detecting objects in images is semantic segmentation where every pixel is assigned to
a class out of a predefined set. To select the correct category, the highest prediction
among the class set is determined by compared all classes against each other. When
adding a new class that is a subset of an already existing category like it is the case for
truck and fire truck, the one-against-all scheme is ine�cient and unstable. Furthermore,
in previously labeled datasets, the subclass might be subsumed by the ancestor so that
training on all datasets without expensive relabeling is not possible. To address this
problem, the class structure can be ordered in a hierarchy implementing relationships
and similarities. Hence, this thesis presents an approach to apply hierarchical classifica-
tion for the task of semantic segmentation in the context of autonomous driving.

To simplify the architecture, the network simultaneously predicts a score for every
class similarly to a flat classifier. Instead of applying a softmax, independent classifiers
are used to obtain the classes’ probabilities. The final prediction is determined by select-
ing the node with the highest score on the first level of the hierarchy. Afterwards, the
search is recursively continued with the descendants of the selected class until either a
leaf is reached or the scores of all classes are lower than a predefined threshold. A great
challenge for which a hierarchical class structure might constitute an improvement, is
learning rare classes. As a node is only compared to its siblings, the ratio of positive
and negative examples for a class is significantly more balanced than for a flat classifier.
Also, moving average filters are applied measuring the current performance to weight
the loss for each class. A novel metric loss function is developed based on a hierarchical
Intersection over Union (IoU). The IoU normalizes the score by the number of examples
so that the value is independent to the class imbalance. To evaluate a hierarchical clas-
sifier, standard metrics are not su�cient as they do not consider the prediction of inner
nodes. Thus, a depth-dependent distance metric is presented taking the depth-decaying
edge weights between prediction and ground truth into account.

In experiments, three di�erent hierarchies are tested di�ering in their size and com-
plexity. All class structures are based on a tree to simplify the task. Compared to a flat
classifier, the hierarchical networks achieve a considerably higher score when evaluated
on the standard IoU metric for the Cityscapes validation dataset. The depth-dependent
distance metric establishes that the hierarchical classifier predicts adjacent inner nodes
when it is uncertain whereas the flat classifier more frequently selects a far-away leaf.
Also, by applying a hierarchy with 69 classes, a higher level of detail can be reached for
predictions while keeping the accuracy for other classes at a reasonable level. However,
several challenges are remaining including detecting novel objects and finding a more
suitable metric to compare the prediction across di�erent class structures.

90

References

References
[1] Abadi, M. et al.: Tensorflow: A system for large-scale machine learning. In: 12th

USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pp. 265–283, 2016.

[2] Abbeel, P. and Ng, A.Y.: Apprenticeship learning via inverse reinforcement learn-
ing. In: Proceedings of the twenty-first international conference on Machine learn-
ing, p. 1. ACM, 2004.

[3] Aghdam, H.H. and Heravi, E.J.: Guide to Convolutional Neural Networks: A
Practical Application to Tra�c-Sign Detection and Classification. Springer Inter-
national Publishing, Cham (Switzerland), first edition, 2017.

[4] Ba, J.L./ Kiros, J.R. and Hinton, G.E.: Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

[5] Barutcuoglu, Z. and DeCoro, C.: Hierarchical Shape Classification Using Bayesian
Aggregation. In: IEEE International Conference on Shape Modeling and Appli-
cations 2006 (SMI’06), pp. 44–48. IEEE, Matsushima, Japan, 2006.

[6] BenTaieb, A. and Hamarneh, G.: Uncertainty driven multi-loss fully convolutional
networks for histopathology. In: M.J. Cardoso/ T. Arbel/ S.L. Lee/ V. Cheply-
gina/ S. Balocco/ D. Mateus/ G. Zahnd/ L. Maier-Hein/ S. Demirci/ E. Granger/
L. Duong/ M.A. Carbonneau/ S. Albarqouni and G. Carneiro, editors, Intravas-
cular Imaging and Computer Assisted Stenting, and Large-Scale Annotation of
Biomedical Data and Expert Label Synthesis, pp. 155–163. Springer International
Publishing, Cham, 2017.

[7] Berman, M. and Blaschko, M.B.: Optimization of the Jaccard index for image
segmentation with the Lovász hinge. Arxiv e-prints, 2017. 1705.08790.

[8] Blockeel, H. et al.: Hierarchical multi-classification. In: Proceedings of the ACM
SIGKDD Workshop on Multi-Relational Data Mining, pp. 21–35, 2002.

[9] Chen, L.C. et al.: Encoder-Decoder with Atrous Separable Convolution for Seman-
tic Image Segmentation. arXiv preprint arXiv:1802.02611, 2018. 1802.02611.

[10] Cho, K. et al.: On the properties of neural machine translation: Encoder-decoder
approaches. Computing Research Repository (CoRR), volume abs/1409.1259,
2014.

[11] Chollet, F.: Xception: Deep Learning with Separable Convolutions. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1800–1807, 2017. 1610.02357.

91

1705.08790
1802.02611
1610.02357

References

[12] Cordts, M. et al.: The Cityscapes Dataset for Semantic Urban Scene Understand-
ing. In: Proc. of the IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2016.

[13] Cordts, M. et al.: The Cityscapes Dataset: Benchmark Suite, 2018. Retrieved
from https://www.cityscapes-dataset.com/benchmarks/#pixel-level-results, last
viewed on 17 August 2018.

[14] Costa, E.P. et al.: A Review of Performance Evaluation Measures for Hierarchical
Classifiers. In: Evaluation Methods for Machine Learning II: papers from the
AAAI-2007 Workshop, pp. 1—-6, 2007. 10.1.1.183.1219.

[15] da Silva, I.N. et al.: Artificial Neural Networks: A Practical Course. Springer
International Publishing, Switzerland, first edition, 2017.

[16] Deng, J. et al.: Hedging your bets: Optimizing accuracy-specificity trade-o�s
in large scale visual recognition. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 3450–3457, 2012.

[17] Dumais, S. and Chen, H.: Hierarchical classification of Web content. In: Pro-
ceedings of the 23rd annual international ACM SIGIR conference on Research and
development in information retrieval, pp. 256–263. ACM (New York, NY, USA),
Athens, Greece, 2000.

[18] Everingham, M. et al.: The pascal visual object classes (voc) challenge. Interna-
tional Journal of Computer Vision, volume 88, no. 2, pp. 303–338, June 2010.

[19] Feng, S./ Fu, P. and Zheng, W.: A Hierarchical multi-label classification algorithm
for gene function prediction. Algorithms, volume 10, no. 4, pp. 1–14, 2017.

[20] Finn, C./ Goodfellow, I.J. and Levine, S.: Unsupervised learning for physical
interaction through video prediction. Computing Research Repository (CoRR),
volume abs/1605.07157, 2016.

[21] Garcia-Garcia, A. et al.: A Review on Deep Learning Techniques Applied to Se-
mantic Segmentation. arXiv preprint arXiv:1704.06857, 2017. 1704.06857.

[22] Geiger, A./ Lenz, P. and Urtasun, R.: Are we ready for autonomous driving? the
KITTI vision benchmark suite. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 3354–3361, 2012.
1612.07695.

[23] Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference
on Computer Vision (ICCV), pp. 1440–1448. IEEE Computer Society, 2015. 1504.
08083.

92

10.1.1.183.1219
1704.06857
1612.07695
1504.08083
1504.08083

References

[24] Girshick, R. et al.: Rich Feature Hierarchies for Accurate Object Detection and Se-
mantic Segmentation. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 580–587, 2014. 1311.2524.

[25] Glorot, X./ Bordes, A. and Bengio, Y.: Deep sparse rectifier neural networks. Pro-
ceedings of the 14th International Conference on Artificial Intelligence and Statis-
tics, volume 15, pp. 315–323, 2011. 1502.03167.

[26] Goldberg, Y.: A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, volume 57, pp. 345–420, 2016.

[27] Goodfellow, I./ Bengio, Y. and Courville, A.: Deep Learning. MIT Press, Cam-
bridge, Massachusetts, first edition, 2016.

[28] Goodfellow, I. et al.: Generative Adversarial Nets. In: Z. Ghahramani/
M. Welling/ C. Cortes/ N.D. Lawrence and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pp. 2672–2680. Curran Associates,
Inc., 2014.

[29] Goodfellow, I.J.: NIPS 2016 tutorial: Generative adversarial networks. Computing
Research Repository (CoRR), volume abs/1701.00160, 2017.

[30] Haixiang, G. et al.: Learning from class-imbalanced data: Review of methods
and applications. In: Expert Systems with Applications, volume 73, pp. 220–239.
Elsevier Ltd, 2017.

[31] He, H. and Ma, Y.: Imbalanced Learning: foundations, algorithms, and applica-
tions. John Wiley & Sons, 2013.

[32] He, K. et al.: Deep Residual Learning for Image Recognition. In: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016. 1703.10722.

[33] Hendrycks, D. and Gimpel, K.: A Baseline for Detecting Misclassified and Out-
of-Distribution Examples in Neural Networks. In: Proceedings of International
Conference on Learning Representations, pp. 1–13, 2017.

[34] Hochreiter, S.: Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Universität
München, 1991.

[35] Hochreiter, S. and Schmidhuber, J.: Long Short-Term Memory. Neural Computa-
tion, volume 9, no. 8, pp. 1735–1780, 1997.

[36] Holroyd, C.B. and Coles, M.G.: The neural basis of human error processing: re-
inforcement learning, dopamine, and the error-related negativity. Psychological
review, volume 109, no. 4, p. 679, 2002.

93

1311.2524
1502.03167
1703.10722

References

[37] Huang, G. et al.: Densely connected convolutional networks. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 2261–2269,
2017.

[38] Io�e, S. and Szegedy, C.: Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift. In: F. Bach and D. Blei, editors, Pro-
ceedings of the 32nd International Conference on Machine Learning, Proceedings of
Machine Learning Research, volume 37, pp. 448–456. PMLR, Lille, France, 07–09
Jul 2015.

[39] Janai, J. et al.: Computer Vision for Autonomous Vehicles: Problems, Datasets
and State-of-the-Art. arXiv preprint arXiv:1704.05519, 2017. 1704.05519.

[40] Kaelbling, L.P./ Littman, M.L. and Moore, A.W.: Reinforcement learning: A
survey. Journal of artificial intelligence research, volume 4, pp. 237–285, 1996.

[41] Karpathy, A.: CS231n Convolutional Neural Networks for Visual Recogni-
tion, 2017. Retrieved from http://cs231n.github.io/convolutional-networks/, last
viewed on 14 May 2018.

[42] Kendall, A./ Gal, Y. and Cipolla, R.: Multi-Task Learning Using Uncertainty to
Weigh Losses for Scene Geometry and Semantics. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition ({CVPR}), 2018. 1705.
07115.

[43] Kingma, D.P. and Ba, J.: Adam: A Method for Stochastic Optimization. In:
International Conference on Learning Representations (ICLR) 2015, 2015. 1412.
6980.

[44] Kiritchenko, S. et al.: Learning and Evaluation in the Presence of Class Hierar-
chies: Application to Text Categorization. In: Conference of the Canadian Society
for Computational Studies of Intelligence, pp. 395—-406. Springer, Berlin, Heidel-
berg, 2006.

[45] Krawczyk, B.: Learning from imbalanced data: open challenges and future direc-
tions. Progress in Artificial Intelligence, volume 5, no. 4, pp. 221–232, 2016.

[46] Krizhevsky, A./ Sutskever, I. and Hinton, G.E.: Imagenet classification with deep
convolutional neural networks. In: Advances in neural information processing
systems, pp. 1097–1105, 2012.

[47] Krogh, A. and Hertz, J.A.: A simple weight decay can improve generalization.
In: J.E. Moody/ S.J. Hanson and R.P. Lippmann, editors, Advances in Neural
Information Processing Systems 4, pp. 950–957. Morgan-Kaufmann, 1992.

[48] LeCun, Y./ Bengio, Y. and Hinton, G.: Deep learning. Nature, volume 521, no.
7553, pp. 436–444, 2015.

94

1704.05519
1705.07115
1705.07115
1412.6980
1412.6980

References

[49] LeCun, Y. et al.: Backpropagation applied to handwritten zip code recognition.
Neural computation, volume 1, no. 4, pp. 541–551, 1989.

[50] LeCun, Y. et al.: Gradient-based learning applied to document recognition. Pro-
ceedings of the IEEE, volume 86, no. 11, pp. 2278–2324, 1998.

[51] Lee, K. et al.: Training Confidence-calibrated Classifiers for Detecting Out-of-
Distribution Samples. CoRR, volume abs/1711.0, pp. 1–16, 2017. 1711.09325.

[52] Lee, K. et al.: Hierarchical Novelty Detection for Visual Object Recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1034–1042, 2018. 1804.00722.

[53] Lin, G. et al.: RefineNet: Multi-path refinement networks for high-resolution se-
mantic segmentation. Proceedings - 30th IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2017, volume 2017-January, pp. 5168–5177, 2017.
1611.06612.

[54] Lin, T. et al.: Microsoft COCO: common objects in context. Computing Research
Repository (CoRR), volume abs/1405.0312, 2014.

[55] Lin, T. et al.: Focal Loss for Dense Object Detection. In: IEEE International
Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pp. 2999–3007, 2017.

[56] Liu, W. et al.: SSD: Single Shot Multibox Detector. In: European conference on
computer vision, pp. 21–37. Springer, 2016.

[57] Long, J./ Shelhamer, E. and Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pp. 3431–3440, 2015. 1411.4038.

[58] Meletis, P. and Dubbelman, G.: Training of Convolutional Networks on Multi-
ple Heterogeneous Datasets for Street Scene Semantic Segmentation. In: IEEE
Intelligent Vehicles Symposium (IV). IEEE Computer Society, 2018. arXiv:
1803.05675v1.

[59] Mitchell, T.M.: Machine Learning. McGraw-Hill, Inc., New York, NY, USA, first
edition, 1997.

[60] Mnih, V. et al.: Playing Atari with Deep Reinforcement Learning. arXiv preprint
arXiv:1312.5602, 2013.

[61] Nair, V. and Hinton, G.E.: Rectified Linear Units Improve Restricted Boltzmann
Machines. Proceedings of the 27th International Conference on Machine Learning,
, no. 3, pp. 807–814, 2010. 1111.6189v1.

95

1711.09325
1804.00722
1611.06612
1411.4038
arXiv:1803.05675v1
arXiv:1803.05675v1
1111.6189v1

References

[62] Neuhold, G. et al.: The Mapillary Vistas Dataset for Semantic Understanding
of Street Scenes. In: Proceedings of the International Conference on Computer
Vision (ICCV), Venice, Italy, pp. 22–29, 2017.

[63] Neuhold, G. et al.: The Mapillary Vistas Dataset for Semantic Under-
standing of Street Scenes Supplementary Materia, 2017. Retrieved from
http://research.mapillary.com/img/publications/ICCV17a_supp.pdf, last viewed
on 13 July 2018.

[64] Nguyen-Tuong, D. and Peters, J.: Model learning for robot control: a survey.
Cognitive processing, volume 12, no. 4, pp. 319–340, 2011.

[65] Noh, H./ Hong, S. and Han, B.: Learning deconvolution network for semantic
segmentation. Proceedings of the IEEE International Conference on Computer
Vision, pp. 1520–1528, 2015. 1505.04366.

[66] Olah, C.: Understanding LSTM Networks, August 2015. Retrieved from
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, last viewed on 16
May 2018.

[67] Rahman, A. and Wang, Y.: Optimizing Intersection-Over-Union in Deep Neu-
ral Networks for Image Segmentation. In: International Symposium on Visual
Computing, pp. 234–244. Springer, 2016.

[68] Redmon, J. and Farhadi, A.: YOLO9000: Better, Faster, Stronger. In: IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525,
2017. 1612.08242.

[69] Redmon, J. and Farhadi, A.: YOLOv3: An Incremental Improvement. arXiv
preprint arXiv:1804.02767, apr 2018. 1804.02767.

[70] Redmon, J. et al.: You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 779–788, 2016.

[71] Ren, S. et al.: Faster R-CNN: Towards Real-Time Object Detection with. In:
C. Cortes/ N.D. Lawrence/ D.D. Lee/ M. Sugiyama and R. Garnett, editors, Ad-
vances in Neural Information Processing Systems 28, pp. 91–99. Curran Associates,
Inc., 2015. 1506.01497.

[72] Ronneberger, O./ Fischer, P. and Brox, T.: U-net: Convolutional networks for
biomedical image segmentation. In: International Conference on Medical image
computing and computer-assisted intervention, pp. 234–241. Springer, 2015.

[73] Rowley, H.A./ Baluja, S. and Kanade, T.: Neural Network-Based Face Detection.
IEEE Trans. Pattern Anal. Mach. Intell., volume 20, no. 1, pp. 23–38, January
1998.

96

1505.04366
1612.08242
1804.02767
1506.01497

References

[74] Rumelhart, D.E. et al.: Learning representations by back-propagating errors. Cog-
nitive modeling, volume 5, no. 3, p. 1, 1988.

[75] Russakovsky, O. et al.: ImageNet Large Scale Visual Recognition Challenge. In-
ternational Journal of Computer Vision (IJCV), volume 115, no. 3, pp. 211–252,
2015.

[76] Sak, H./ Senior, A. and Beaufays, F.: Long short-term memory based recur-
rent neural network architectures for large vocabulary speech recognition. arXiv
preprint arXiv:1402.1128, 2014.

[77] Sermanet, P. et al.: Pedestrian Detection with Unsupervised Multi-stage Feature
Learning. In: Proceedings of the 2013 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR ’13, pp. 3626–3633. IEEE Computer Society,
Washington, DC, USA, 2013.

[78] Silla, C.N. and Freitas, A.A.: A survey of hierarchical classification across di�erent
application domains. Data Mining and Knowledge Discovery, volume 22, no. 1-2,
pp. 31–72, 2011. arXiv:1507.02293v1.

[79] Silver, D. et al.: Mastering the Game of Go with Deep Neural Networks and Tree
Search. Nature, volume 529, no. 7587, pp. 484–489, January 2016.

[80] Simonyan, K. and Zisserman, A.: Very Deep Convolutional Networks for Large-
Scale Image Recognition. In: International Conference on Learning Representa-
tions, pp. 1–14, 2014. 1409.1556.

[81] Singh, S.P. et al.: Robust reinforcement learning in motion planning. In: Advances
in neural information processing systems, pp. 655–662, 1994.

[82] Sokolova, M. and Lapalme, G.: A systematic analysis of performance measures for
classification tasks. Information Processing and Management, volume 45, no. 4,
pp. 427–437, 2009.

[83] Soutner, D. and Müller, L.: Application of LSTM Neural Networks in Language
Modelling, pp. 105–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[84] Srivastava, N. et al.: Dropout: A Simple Way to Prevent Neural Networks from
Overfitting. Journal of Machine Learning Research, volume 15, pp. 1929–1958,
2014. 1102.4807.

[85] Srivastava, R.K./ Gre�, K. and Schmidhuber, J.: Highway Networks. arXiv
preprint arXiv:1505.00387, 2015. 1505.00387.

[86] Stallkamp, J. et al.: The German Tra�c Sign Recognition Benchmark: A multi-
class classification competition. In: Proceedings of the International Joint Confer-
ence on Neural Networks, pp. 1453–1460, 2011. 1302.1700.

97

arXiv:1507.02293v1
1409.1556
1102.4807
1505.00387
1302.1700

References

[87] Sun, A.S.A. and Lim, E.P.L.E.P.: Hierarchical text classification and evaluation.
In: Proceedings 2001 IEEE International Conference on Data Mining, pp. 521–528,
2001.

[88] Sutton, R.S. and Barto, A.G.: Introduction to Reinforcement Learning. MIT
Press, Cambridge, MA, USA, first edition, 1998.

[89] Szegedy, C. et al.: Going Deeper with Convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2014.
1409.4842.

[90] Szegedy, C. et al.: Rethinking the Inception Architecture for Computer Vision. In:
Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 2818—-2826, 2016. 1512.00567.

[91] Szegedy, C. et al.: Inception-v4, Inception-ResNet and the Impact of Residual
Connections on Learning. In: Proceedings of the Thirty-First {AAAI} Conference
on Artificial Intelligence, pp. 4278—-4284, 2017. 1602.07261.

[92] Uhrig, J. et al.: Box2pix: Single-shot instance segmentation by assigning pixels to
object boxes. In: IEEE Intelligent Vehicles Symposium (IV), 2018.

[93] Uijlings, J. et al.: Selective Search for Object Recognition. International Journal
of Computer Vision, 2013.

[94] Valentini, G.: True Path Rule Hierarchical Ensembles. In: J.A. Benediktsson/ /
J. Kittler/ and F. Roli, editors, Multiple Classifier Systems, pp. 232–241. Springer
Berlin Heidelberg, 2009. arXiv:1011.1669v3.

[95] Veit, A./ Wilber, M. and Belongie, S.: Residual Networks Behave Like Ensembles
of Relatively Shallow Networks. In: D.D. Lee/ M. Sugiyama/ U.V. Luxburg/
I. Guyon and R. Garnett, editors, Advances in Neural Information Processing
Systems, pp. 550—-558. Curran Associates, Inc., 2016. 1605.06431.

[96] Versteegh, M. et al.: The zero resource speech challenge 2015. In: Interspeech,
pp. 3169–3173, 2015.

[97] Villegas, R. et al.: Decomposing motion and content for natural video sequence
prediction. In: Conference on Computer Vision and Pattern Recognition (CVPR),
2017.

[98] Xie, M. et al.: Active and intelligent sensing of road obstacles: Application to the
European Eureka-PROMETHEUS project. In: Computer Vision, 1993. Proceed-
ings., Fourth International Conference on, pp. 616–623. IEEE, 1993.

[99] Zeiler, M.D. and Fergus, R.: Visualizing and understanding convolutional net-
works. In: European conference on computer vision, volume 8689 LNCS, pp.
818–833. Springer, 2014. 1311.2901.

98

1409.4842
1512.00567
1602.07261
arXiv:1011.1669v3
1605.06431
1311.2901

References

[100] Zhao, H. et al.: Pyramid scene parsing network. In: Proceedings - 30th IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2017, pp. 6230–
6239, 2017. 1612.01105.

[101] Ziegler, J. et al.: Making Bertha drive—An autonomous journey on a historic
route. IEEE Intelligent Transportation Systems Magazine, volume 6, no. 2, pp.
8–20, 2014.

99

1612.01105

A. Dataset distribution

A. Dataset distribution
This section reviews the exact class distributions of the datasets Cityscapes [12], Cityscapes
Special and Mapillary Vistas [62]. Therefore, tables list the number of positive and neg-
ative examples for each class of the hierarchy. The values are normalized by the number
of pixels per image to get the expected distribution for a random image. Besides, the
ratio of positives and the overall proportion of the class labels in the whole dataset are
shown. The number of images the class occurs in is stated on the right side of the tables.
The tables for Cityscapes and Cityscapes Special are based on the standard hierarchy
visualized in Figure 48 (Appendix B). The dashed lines group sibling nodes together that
are mutually exclusive. As the large-scale hierarchy mainly di�ers from the standard
structure by having additional classes from Mapillary Vistas, the table of this dataset
is based on the greater hierarchy. The values can be easily adopted for the standard or
small hierarchy. To give a better overview of the datasets, the first subsection subsumes
all data that is used for training whereas the second shows the validation datasets.

A.1. Training Datasets

Cityscapes Training

Class Positive Negative Ratio Proportion Images

Ground 861,981 1,047,096 45.15% 41.10% 2,903
Sky 74,505 1,834,572 3.90% 3.55% 2,626
Obstacle 972,591 936,486 50.95% 46.38% 2,903
Street 815,721 21,848 97.39% 38.90% 2,880
Natural ground 21,848 815,721 2.61% 1.04% 1,635
Road 685,119 113,978 85.74% 32.67% 2,866
Sidewalk 113,978 685,119 14.26% 5.43% 2,749
Terrain 21,848 0 100.00% 1.04% 1,635
Water 0 21,848 0.00% 0.00% 0
Vehicle 154,075 818,514 15.84% 7.35% 2,865
Vulnerable road user 24,939 947,650 2.56% 1.19% 2,443
Nature 295,798 676,791 30.41% 14.10% 2,821
Infrastructure 497,777 474,812 51.18% 23.74% 2,902
Passenger car 129,556 24,518 84.09% 6.18% 2,765
Large vehicle 15,073 139,001 9.78% 0.72% 803
Ridable vehicle 9,445 144,629 6.13% 0.45% 1,789
Truck 4,938 10,134 32.76% 0.24% 347

100

A. Dataset distribution

Cityscapes Training

Class Positive Negative Ratio Proportion Images

Caravan 847 14,225 5.62% 0.04% 56
Bus 4,344 10,728 28.82% 0.21% 269
Train 4,431 10,641 29.40% 0.21% 142
Trailer 512 14,560 3.40% 0.02% 82
Bicycle 7,688 1,757 81.40% 0.37% 1,630
Motorbike 1,757 7,688 18.60% 0.08% 510
Animal 0 24,939 0.00% 0.00% 0
Human 24,939 0 100.00% 1.19% 2,443
Pedestrian 22,443 2,495 90.00% 1.07% 2,290
Rider 2,495 22,443 10.00% 0.12% 1,012
Bicyclist 0 0 0.00% 0.00% 0
Motorcyclist 0 0 0.00% 0.00% 0
Elongated infrastructure 460,449 37,327 92.50% 21.96% 2,895
Vertical infrastructure 22,988 474,788 4.62% 1.10% 2,878
Sign 14,339 483,437 2.88% 0.68% 2,789
Overpass 6,889 453,558 1.50% 0.33% 245
Building 424,513 35,934 92.20% 20.24% 2,865
Wall 12,495 447,952 2.71% 0.60% 978
Guardrail 195 460,252 0.04% 0.01% 20
Fence 16,355 444,092 3.55% 0.78% 1,293
Bridge 5,732 1,156 83.22% 0.27% 224
Tunnel 1,156 5,732 16.78% 0.06% 23
Hydrant 0 22,988 0.00% 0.00% 0
Pole 22,988 0 100.00% 1.10% 2,878
Trash bin 0 22,988 0.00% 0.00% 0
Tra�c sign 10,435 3,903 72.78% 0.50% 2,760
Tra�c light 3,903 10,435 27.22% 0.19% 1,624
Duty - Normal 161,283 0 100.00% 7.69% 2,887
Duty - Police 0 161,283 0.00% 0.00% 0
Duty - Fire 0 161,283 0.00% 0.00% 0
Duty - Medical 0 161,283 0.00% 0.00% 0

101

A. Dataset distribution

Cityscapes Training

Class Positive Negative Ratio Proportion Images

Duty - School 0 161,283 0.00% 0.00% 0

Total 2,097,152 - 100% 100% 2,903

Table 5: The Cityscapes training dataset contains 2975 images. As 72 of those are
subsumed in the Cityscapes Special dataset, the table shows the distribution
of the 2903 remaining images. Overall, the most common leaf classes include
road and building, whereas guardrail and trailer are the rarest classes.

102

A. Dataset distribution

Cityscapes Special Training

Class Positive Negative Ratio Proportion Images

Ground 723,935 790,070 47.82% 34.52% 230
Sky 74,655 1,439,350 4.93% 3.56% 216
Obstacle 715,415 798,590 47.25% 34.11% 230
Street 706,016 11,579 98.39% 33.67% 230
Naturalground 11,579 706,016 1.61% 0.55% 48
Road 633,000 65,001 90.69% 30.18% 230
Sidewalk 65,001 633,000 9.31% 3.10% 194
Terrain 11,579 0 100.00% 0.55% 48
Water 0 11,579 0.00% 0.00% 0
Vehicle 153,061 562,353 21.39% 7.30% 230
Vulnerableroaduser 11,470 703,944 1.60% 0.55% 145
Nature 206,044 509,370 28.80% 9.82% 221
Infrastructure 344,839 370,575 48.20% 16.44% 230
Passengercar 124,296 28,764 81.21% 5.93% 223
Largevehicle 25,380 127,680 16.58% 1.21% 108
Ridablevehicle 3,384 149,676 2.21% 0.16% 84
Truck 15,147 10,231 59.69% 0.72% 74
Caravan 303 25,075 1.19% 0.01% 5
Bus 7,386 17,992 29.10% 0.35% 33
Train 2,414 22,964 9.51% 0.12% 5
Trailer 128 25,250 0.50% 0.01% 4
Bicycle 2,819 565 83.30% 0.13% 75
Motorbike 565 2,819 16.70% 0.03% 19
Animal 0 11,470 0.00% 0.00% 0
Human 11,470 0 100.00% 0.55% 145
Pedestrian 10,372 1,098 90.43% 0.49% 130
Rider 1,098 10,372 9.57% 0.05% 54
Bicyclist 0 0 0.00% 0.00% 0
Motorcyclist 0 0 0.00% 0.00% 0
Elongatedinfrastructure 320,822 24,015 93.04% 15.30% 228
Verticalinfrastructure 14,174 330,663 4.11% 0.68% 222

103

A. Dataset distribution

Cityscapes Special Training

Class Positive Negative Ratio Proportion Images

Sign 9,841 334,996 2.85% 0.47% 196
Overpass 2,066 318,755 0.64% 0.10% 5
Building 289,587 31,234 90.26% 13.81% 221
Wall 14,223 306,598 4.43% 0.68% 59
Guardrail 575 320,246 0.18% 0.03% 2
Fence 14,370 306,451 4.48% 0.69% 88
Bridge 903 1,162 43.73% 0.04% 4
Tunnel 1,162 903 56.27% 0.06% 1
Hydrant 0 14,174 0.00% 0.00% 0
Pole 14,174 0 100.00% 0.68% 222
Trashbin 0 14,174 0.00% 0.00% 0
Tra�csign 7,155 2,685 72.71% 0.34% 190
Tra�clight 2,685 7,155 27.29% 0.13% 125
Duty - Normal 118,245 38,956 75.22% 5.64% 221
Duty - Police 19,463 137,738 12.38% 0.93% 117
Duty - Fire 5,787 151,414 3.68% 0.28% 20
Duty - Medical 13,706 143,495 8.72% 0.65% 90
Duty - School 0 157,201 0.00% 0.00% 0

Total 2,097,152 - 100% 100% 230

Table 6: The Cityscapes Special training dataset is a subset of the Cityscapes training
and testing. It constitutes an initial dataset to test the performance on learn-
ing object attributes. Overall, 230 images were collected and relabeled with
attribute labels for duty. The most rarest class constitutes fire that only occurs
on 20 images. Thus, the variety of the examples are limited and the network
can less generalize. The other attribute nodes police and medical have about
100 di�erent images where objects are assigned to those labels. The distribution
of the other classes is similar to Cityscapes training.

104

A. Dataset distribution

Mapillary Large-Scale Training

Class Positive Negative Ratio Proportion Images

Ground 677,129 1,327,512 33.78% 32.29% 17,049
Sky 379,663 1,624,978 18.94% 18.10% 16,391
Obstacle 947,849 1,056,792 47.28% 45.20% 17,103
Street 642,839 34,289 94.94% 30.65% 17,028
Natural ground 34,289 642,839 5.06% 1.64% 8,363
Road 528,214 94,412 84.84% 25.19% 16,945
Sidewalk 94,412 528,214 15.16% 4.50% 14,642
Lane 469,149 59,063 88.82% 22.37% 16,872
Marking 50,318 477,894 9.53% 2.40% 15,471
Hole 1,348 526,864 0.26% 0.06% 4,630
Bike lane 7,397 520,815 1.40% 0.35% 1,253
Lane marking (general) 34,540 15,777 68.64% 1.65% 15,149
Lane marking (crosswalk) 15,777 34,540 31.36% 0.75% 5,528
Manhole 1,254 94 93.03% 0.06% 4,391
Pothole 94 1,254 6.97% 0.00% 405
Pedestrian sidewalk 70,698 23,714 74.88% 3.37% 12,420
Curb 23,714 70,698 25.12% 1.13% 14,363
Terrain 32,727 1,562 95.44% 1.56% 8,179
Water 1,562 32,727 4.56% 0.07% 426
Vehicle 130,371 817,476 13.75% 6.22% 16,380
Vulnerable road user 11,344 936,503 1.20% 0.54% 9,697
Nature 344,469 603,378 36.34% 16.43% 16,576
Infrastructure 461,663 486,184 48.71% 22.01% 17,080
Passenger car 104,222 24,931 80.70% 4.97% 15,988
Large vehicle 20,926 108,227 16.20% 1.00% 6,458
Ridable vehicle 4,005 125,148 3.10% 0.19% 5,071
Truck 11,281 9,643 53.91% 0.54% 4,158
Caravan 99 20,825 0.47% 0.00% 114
Bus 8,243 12,681 39.39% 0.39% 2,790
Train 728 20,196 3.48% 0.03% 223
Trailer 302 20,622 1.44% 0.01% 188

105

A. Dataset distribution

Mapillary Large-Scale Training

Class Positive Negative Ratio Proportion Images

Boat 271 20,653 1.30% 0.01% 122
Bicycle 1,917 2,087 47.88% 0.09% 2,828
Motorbike 1,892 2,112 47.25% 0.09% 2,644
Buggy 195 3,809 4.87% 0.01% 678
Animal 61 11,282 0.54% 0.00% 791
Human 11,282 61 99.46% 0.54% 9,531
Pedestrian 9,468 1,814 83.92% 0.45% 8,679
Rider 1,814 9,468 16.08% 0.09% 3,398
Bicyclist 1,082 681 61.37% 0.05% 1,771
Motorcyclist 681 1,082 38.63% 0.03% 1,824
Elongated infrastructure 405,091 56,571 87.75% 19.32% 16,976
Vertical infrastructure 32,398 429,264 7.02% 1.54% 16,974
Box-like infrastructure 3,436 458,226 0.74% 0.16% 6,911
Sign 20,737 440,925 4.49% 0.99% 16,205
Overpass 27,513 377,576 6.79% 1.31% 3,759
Building 293,589 111,500 72.48% 14.00% 16,057
Barrier 83,987 321,102 20.73% 4.00% 14,170
Bridge 22,638 4,874 82.28% 1.08% 2,394
Tunnel 2,525 24,987 9.18% 0.12% 202
Tra�c sign frame 2,349 25,163 8.54% 0.11% 2,006
Wall 23,651 46,784 33.58% 1.13% 7,953
Guardrail 8,164 62,271 11.59% 0.39% 2,877
Fence 38,620 31,815 54.83% 1.84% 10,724
Hydrant 171 32,226 0.53% 0.01% 1,663
Pole 32,226 171 99.47% 1.54% 16,974
Bench 390 3,045 11.35% 0.02% 964
Trash bin 1,788 1,647 52.05% 0.09% 3,678
Junction box 1,131 2,304 32.93% 0.05% 3,541
Mailbox 126 3,309 3.67% 0.01% 541
Tra�c sign 13,662 7,074 65.89% 0.65% 15,974
Tra�c light 5,430 15,306 26.19% 0.26% 8,763

106

A. Dataset distribution

Mapillary Large-Scale Training

Class Positive Negative Ratio Proportion Images

Ad sign 1,644 19,092 7.93% 0.08% 3,172
Tra�c sign (front) 11,566 2,095 84.66% 0.55% 15,534
Tra�c sign (back) 2,095 11,566 15.34% 0.10% 11,311
Duty - Normal 0 0 0.00% 0.00% 0
Duty - Police 0 0 0.00% 0.00% 0
Duty - Fire 0 0 0.00% 0.00% 0
Duty - Medical 0 0 0.00% 0.00% 0
Duty - School 0 0 0.00% 0.00% 0

Total 2,097,152 - 100% 100% 17,106

Table 7: The Mapillary Vistas training dataset contains labels for much more classes
than Cityscapes. Therefore, the table shows the class distribution regarding
to the large-scale hierarchy. Within the 17,106 images, the class road appears
most often. In contrast to Cityscapes, the class caravan has about 10 times less
pixels in average. Thus, it is one of the rarest classes in Mapillary Vistas next
to pothole and animal.

107

A. Dataset distribution

A.2. Validation Datasets

Cityscapes Validation

Class Positive Negative Ratio Proportion Images

Ground 851,283 1,032,050 45.20% 40.59% 495
Sky 61,804 1,821,529 3.28% 2.95% 438
Obstacle 970,246 913,087 51.52% 46.26% 495
Street 797,978 15,463 98.10% 38.05% 482
Natural ground 15,463 797,978 1.90% 0.74% 240
Road 689,487 99,253 87.42% 32.88% 479
Sidewalk 99,253 689,487 12.58% 4.73% 461
Terrain 15,463 0 100.00% 0.74% 240
Water 0 15,463 0.00% 0.00% 0
Vehicle 149,444 820,801 15.40% 7.13% 485
Vulnerable road user 27,906 942,339 2.88% 1.33% 439
Nature 318,656 651,589 32.84% 15.19% 482
Infrastructure 474,239 496,006 48.88% 22.61% 495
Passenger car 119,443 29,999 79.93% 5.70% 474
Large vehicle 15,349 134,093 10.27% 0.73% 173
Ridable vehicle 14,650 134,792 9.80% 0.70% 363
Truck 5,609 9,739 36.55% 0.27% 83
Caravan 26 15,322 0.17% 0.00% 5
Bus 7,156 8,192 46.62% 0.34% 75
Train 2,067 13,281 13.47% 0.10% 22
Trailer 490 14,858 3.19% 0.02% 16
Bicycle 13,177 1,473 89.95% 0.63% 347
Motorbike 1,473 13,177 10.05% 0.07% 90
Animal 0 27,906 0.00% 0.00% 0
Human 27,906 0 100.00% 1.33% 439
Pedestrian 23,899 4,007 85.64% 1.14% 402
Rider 4,007 23,899 14.36% 0.19% 253
Bicyclist 0 0 0.00% 0.00% 0
Motorcyclist 0 0 0.00% 0.00% 0

108

A. Dataset distribution

Cityscapes Validation

Class Positive Negative Ratio Proportion Images

Elongated infrastructure 430,872 43,366 90.86% 20.55% 492
Vertical infrastructure 27,274 446,964 5.75% 1.30% 486
Sign 16,092 458,146 3.39% 0.77% 473
Overpass 629 430,240 0.15% 0.03% 14
Building 400,993 29,876 93.07% 19.12% 486
Wall 13,763 417,106 3.19% 0.66% 203
Guardrail 78 430,791 0.02% 0.00% 1
Fence 15,406 415,463 3.58% 0.73% 196
Bridge 629 0 100.00% 0.03% 14
Tunnel 0 629 0.00% 0.00% 0
Hydrant 0 27,274 0.00% 0.00% 0
Pole 27,274 0 100.00% 1.30% 486
Trash bin 0 27,274 0.00% 0.00% 0
Tra�c sign 12,364 3,728 76.83% 0.59% 469
Tra�c light 3,728 12,364 23.17% 0.18% 289
Duty - Normal 156,108 0 100.00% 7.44% 488
Duty - Police 0 156,108 0.00% 0.00% 0
Duty - Fire 0 156,108 0.00% 0.00% 0
Duty - Medical 0 156,108 0.00% 0.00% 0
Duty - School 0 156,108 0.00% 0.00% 0

Total 2,097,152 - 100% 100% 500

Table 8: The Cityscapes validation dataset contains 500 images from three cities that
are not included in the training. The distribution of both sets is similar but
di�ers especially for rare classes. For instance, the class caravan is about 40
times less likely to be assigned to label in the validation dataset. With only 26
pixels per image in average, it is the rarest class in any of the datasets. The
distribution for common classes on which the Cityscapes validation is performed
only slightly deviates from the training set.

109

A. Dataset distribution

Mapillary Large-Scale Validation

Class Positive Negative Ratio Proportion Images

Ground 693,002 1,307,489 34.64% 33.04% 1,880
Sky 383,099 1,617,392 19.15% 18.27% 1,821
Obstacle 924,390 1,076,101 46.21% 44.08% 1,886
Street 654,755 38,246 94.48% 31.22% 1,877
Natural ground 38,246 654,755 5.52% 1.82% 965
Road 531,977 99,271 84.27% 25.37% 1,866
Sidewalk 99,271 531,977 15.73% 4.73% 1,600
Lane 473,171 58,804 88.95% 22.56% 1,854
Marking 49,969 482,006 9.39% 2.38% 1,697
Hole 1,419 530,556 0.27% 0.07% 511
Bike lane 7,416 524,559 1.39% 0.35% 137
Lane marking (general) 33,386 16,582 66.81% 1.59% 1,661
Lane marking (crosswalk) 16,582 33,386 33.19% 0.79% 593
Manhole 1,196 223 84.28% 0.06% 488
Pothole 223 1,196 15.72% 0.01% 34
Pedestrian sidewalk 74,895 24,376 75.44% 3.57% 1,381
Curb 24,376 74,895 24.56% 1.16% 1,579
Terrain 35,734 2,512 93.43% 1.70% 941
Water 2,512 35,734 6.57% 0.12% 52
Vehicle 125,327 799,062 13.56% 5.98% 1,801
Vulnerable road user 11,263 913,126 1.22% 0.54% 1,133
Nature 337,202 587,187 36.48% 16.08% 1,842
Infrastructure 450,597 473,792 48.75% 21.49% 1,883
Passenger car 100,734 23,288 81.22% 4.80% 1,758
Large vehicle 19,685 104,337 15.87% 0.94% 716
Ridable vehicle 3,603 120,419 2.91% 0.17% 576
Truck 11,025 8,659 56.01% 0.53% 453
Caravan 193 19,491 0.98% 0.01% 9
Bus 7,064 12,620 35.89% 0.34% 298
Train 944 18,740 4.80% 0.05% 30
Trailer 296 19,388 1.50% 0.01% 25

110

A. Dataset distribution

Mapillary Large-Scale Validation

Class Positive Negative Ratio Proportion Images

Boat 162 19,522 0.82% 0.01% 20
Bicycle 1,666 1,936 46.25% 0.08% 317
Motorbike 1,744 1,858 48.42% 0.08% 310
Buggy 192 3,410 5.33% 0.01% 83
Animal 91 11,171 0.81% 0.00% 99
Human 11,171 91 99.19% 0.53% 1,113
Pedestrian 9,365 1,806 83.83% 0.45% 1,021
Rider 1,806 9,365 16.17% 0.09% 381
Bicyclist 1,072 714 60.02% 0.05% 194
Motorcyclist 714 1,072 39.98% 0.03% 209
Elongated infrastructure 390,771 59,824 86.72% 18.63% 1,869
Vertical infrastructure 33,683 416,912 7.48% 1.61% 1,873
Box-like infrastructure 3,864 446,731 0.86% 0.18% 783
Sign 22,277 428,318 4.94% 1.06% 1,782
Overpass 23,722 367,048 6.07% 1.13% 395
Building 285,217 105,553 72.99% 13.60% 1,756
Barrier 81,831 308,939 20.94% 3.90% 1,537
Bridge 19,357 4,364 81.60% 0.92% 273
Tunnel 1,952 21,769 8.23% 0.09% 17
Tra�c sign frame 2,412 21,309 10.17% 0.12% 197
Wall 25,358 45,037 36.02% 1.21% 883
Guardrail 6,959 63,436 9.89% 0.33% 312
Fence 38,078 32,317 54.09% 1.82% 1,167
Hydrant 134 33,549 0.40% 0.01% 183
Pole 33,549 134 99.60% 1.60% 1,873
Bench 405 3,457 10.49% 0.02% 108
Trash bin 1,644 2,218 42.57% 0.08% 413
Junction box 1,724 2,138 44.64% 0.08% 431
Mailbox 89 3,773 2.30% 0.00% 61
Tra�c sign 15,381 6,895 69.05% 0.73% 1,758
Tra�c light 5,182 17,094 23.26% 0.25% 943

111

A. Dataset distribution

Mapillary Large-Scale Validation

Class Positive Negative Ratio Proportion Images

Ad sign 1,713 20,563 7.69% 0.08% 350
Tra�c sign (front) 13,234 2,147 86.04% 0.63% 1,718
Tra�c sign (back) 2,147 13,234 13.96% 0.10% 1,260
Duty - Normal 0 0 0.00% 0.00% 0
Duty - Police 0 0 0.00% 0.00% 0
Duty - Fire 0 0 0.00% 0.00% 0
Duty - Medical 0 0 0.00% 0.00% 0
Duty - School 0 0 0.00% 0.00% 0

Total 2,097,152 - 100% 100% 1,886

Table 9: A set of 1886 images constitute the Mapillary Vistas validation dataset. It is
very similar to the training dataset, but contains some more pixels for rare
classes like animal and pothole.

112

B. Label Hierarchies

B. Label Hierarchies
This section summarizes the visualizations of the three class hierarchies used for experi-
ments in Section 4. Each node is illustrated by a filled circle. The label id and the name
of the class is written inside the node. The color of a node shows the color-mapping for
example images in Section 4. The color for object attributes are a combination of the
base class and the attribute node color.

The directed connections between nodes constitute an is-a relationship. The number
written next to the arrow is the edges weight for the depth-dependent distance metric
(see Section 3.3.2). Virtual edges to object attributes are visualized by a dashed line.
The root node is given by label with the id -1. For a detailed discussion of the class
structures, see Section 3.1.4.

B.1. Small-scale hierarchy

(-1) label

(0) ground

1.0

(1) sky1.0

(2) obstacle

1.0

(3) road

0.8

(4) sidewalk0.8

(5) terrain

0.8

(6) vehicle

0.8

(7) vulnerableroaduser0.8

(8) nature

0.8

(9) infrastructure

0.8

(10) passengercar

0.64
(11) largevehicle

0.64

(12) ridablevehicle0.64

(13) truck

0.512

(14) bus
0.512

(15) train0.512

(16) bicycle0.512

(17) motorbike

0.512

(18) pedestrian0.64

(19) rider

0.64

(20) building
0.64

(21) barrier0.64

(22) pole

0.64

(23) sign

0.64

(24) wall0.512

(25) fence
0.512

(26) trafficsign0.512

(27) trafficlight

0.512

Figure 47: The small-scale hierarchy consists of the 19 Cityscapes validation classes and
nine inner nodes.

113

B. Label Hierarchies

B.2. Standard hierarchy

(44) Normal

Duty

(45) Police

(46) Fire

(47) Medical

(48) School

(-1) label

(0) ground1.0

(1) sky
1.0

(2) obstacle

1.0

(3) street
0.8

(4) naturalground
0.8

(5) road
0.64

(6) sidewalk0.64

(7) terrain0.64

(8) water

0.64

(9) vehicle

0.8

(10) vulnerableroaduser0.8

(11) nature

0.8

(12) infrastructure

0.8

(13) passengercar

0.64

(14) largevehicle
0.64

(15) ridablevehicle
0.64

(16) truck0.512

(17) caravan0.512

(18) bus0.512

(19) train0.512

(20) trailer
0.512

(21) bicycle0.512

(22) motorbike

0.512

(23) animal
0.64

(24) human

0.64

(25) pedestrian0.512

(26) rider

0.512 (27) bicyclist0.4096

(28) motorcyclist
0.4096

(29) elongatedinfrastructure

0.64

(30) verticalinfrastructure

0.64

(31) sign

0.64

(32) overpass0.512

(33) building0.512

(34) wall0.512

(35) guardrail

0.512

(36) fence

0.512

(37) bridge0.4096

(38) tunnel

0.4096

(39) hydrant0.512

(40) pole

0.512

(41) trashbin

0.512

(42) trafficsign0.512

(43) trafficlight

0.512

Figure 48: The standard hierarchy consists of 48 nodes extending the small-scale hier-
archy by rare classes like caravan and trailer. Also, the attribute duty is
added.

114

B. Label Hierarchies

B.3. Large-scale hierarchy

(65) Normal

Duty

(66) Police

(67) Fire

(68) Medical

(69) School

(-1) label

(0) ground

1.0

(1) sky
1.0

(2) obstacle
1.0

(3) street0.8

(4) naturalground

0.8
(5) road0.64

(6) sidewalk

0.64

(7) carroad
0.512

(8) markings0.512

(9) holes0.512

(10) bikelane

0.512

(11) lanemarkinggeneral
0.4096

(12) lanemarkingcrosswalk0.4096

(13) manhole0.4096

(14) pothole

0.4096

(15) pedsidewalk0.512

(16) curb

0.512

(17) terrain
0.64

(18) water0.64

(19) vehicle

0.8

(20) vulnerableroaduser

0.8

(21) nature0.8

(22) infrastructure

0.8

(23) passengercar

0.64

(24) largevehicle0.64

(25) ridablevehicle

0.64

(26) truck
0.512

(27) caravan

0.512

(28) bus0.512

(29) train0.512

(30) trailer

0.512

(31) boat

0.512

(32) bicycle

0.512

(33) motorbike0.512

(34) buggy

0.512

(35) animal
0.64

(36) human

0.64

(37) pedestrian
0.512

(38) rider0.512 (39) bicyclist0.4096

(40) motorcyclist

0.4096

(41) elongatedinfrastructure0.64

(42) verticalinfrastructure

0.64

(43) boxinfrastructure

0.64

(44) sign

0.64

(45) overpass0.512

(46) building0.512

(47) barrier

0.512

(48) bridge

0.4096

(49) tunnel
0.4096

(50) trafficsignframe
0.4096

(51) wall

0.4096

(52) guardrail

0.4096

(53) fence
0.4096

(54) hydrant

0.512
(55) pole0.512

(56) bench

0.512

(57) trashbin0.512

(58) junctionbox0.512

(59) mailbox

0.512

(60) trafficsigngeneral

0.512

(61) trafficlight
0.512

(62) adsign0.512
(63) trafficsignfront

0.4096

(64) trafficsignback0.4096

Figure 49: The large-scale hierarchy consists of 69 nodes. Additional classes compared
to the standard hierarchy include lane markings and buggy.

115

B. Label Hierarchies

(65) Normal

Duty

(66) Police

(67) Fire

(68) Medical

(69) School

(-1) label

(0) ground1.0

(1) sky
1.0

(2) obstacle

1.0 (19) vehicle

0.8

(20) vulnerableroaduser0.8

(21) nature

0.8

(22) infrastructure

0.8

(23) passengercar

0.64

(24) largevehicle

0.64

(25) ridablevehicle

0.64

(26) truck0.512

(27) caravan0.512

(28) bus0.512

(29) train0.512

(30) trailer

0.512

(31) boat

0.512

(32) bicycle0.512

(33) motorbike

0.512

(34) buggy

0.512

(35) animal

0.64

(36) human

0.64

(37) pedestrian0.512

(38) rider

0.512

(39) bicyclist0.4096

(40) motorcyclist

0.4096

(0) ground

(3) street0.8

(4) naturalground
0.8

(5) road

0.64

(6) sidewalk0.64

(7) carroad

0.512
(8) markings

0.512

(9) holes0.512

(10) bikelane

0.512

(11) lanemarkinggeneral
0.4096

(12) lanemarkingcrosswalk0.4096

(13) manhole0.4096

(14) pothole

0.4096

(15) pedsidewalk0.512

(16) curb

0.512

(17) terrain0.64

(18) water

0.64

Figure 50: Larger figures of large-scale hierarchy for printed version.

116

B. Label Hierarchies

(22) infrastructure

(41) elongatedinfrastructure

0.64

(42) verticalinfrastructure
0.64

(43) boxinfrastructure

0.64

(44) sign

0.64

(45) overpass

0.512

(46) building0.512

(47) barrier
0.512

(48) bridge
0.4096

(49) tunnel0.4096

(50) trafficsignframe

0.4096

(51) wall
0.4096

(52) guardrail
0.4096

(53) fence

0.4096

(54) hydrant
0.512

(55) pole0.512

(56) bench
0.512

(57) trashbin0.512

(58) junctionbox

0.512

(59) mailbox

0.512

(60) trafficsigngeneral0.512

(61) trafficlight
0.512

(62) adsign

0.512

(63) trafficsignfront0.4096

(64) trafficsignback
0.4096

Figure 51: Larger figures of large-scale hierarchy for printed version (subtree infrastruc-
ture).

117

	Introduction
	Motivation
	Proposed Approach
	Outline

	Foundations
	Machine Learning
	Artificial Neural Networks
	Convolutional Neural Networks
	Image understanding with CNNs
	Related work

	Hierarchical Object Detection
	Hierarchical classification
	Optimization on rare classes
	Hierarchical metric
	Metric Loss Function

	Experiments
	Experimental setup
	Hierarchical classifier for Semantic Segmentation
	Testing scalability of hierarchical classification
	Threshold adaptation

	Outlook
	Conclusion
	Dataset distribution
	Training Datasets
	Validation Datasets

	Label Hierarchies
	Small-scale hierarchy
	Standard hierarchy
	Large-scale hierarchy

