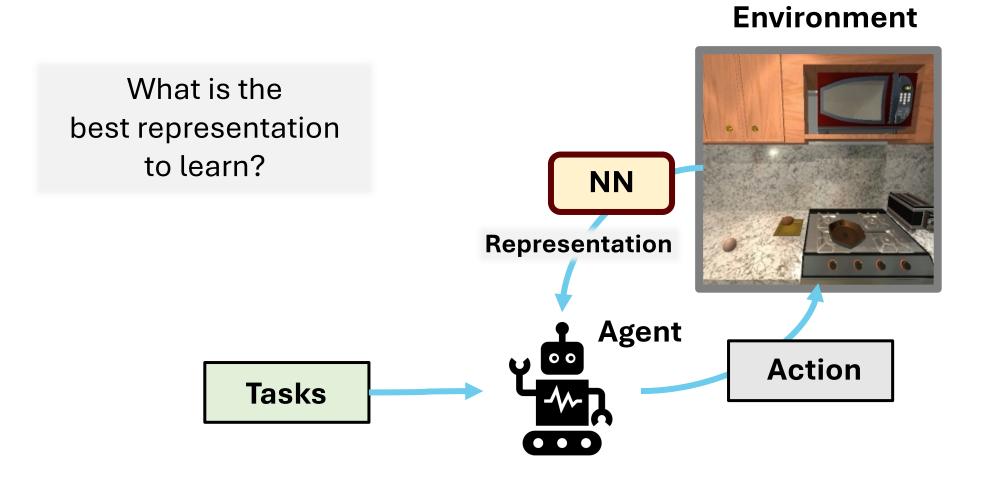
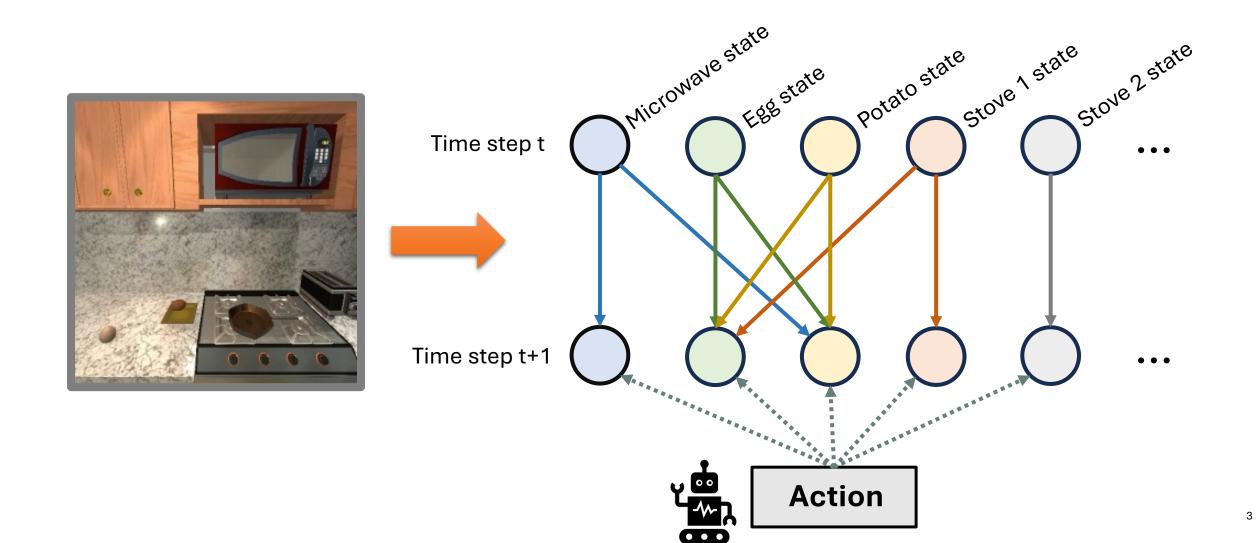
BISCUIT: Causal Representation Learning from Binary Interactions

Phillip Lippe, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, Efstratios Gavves

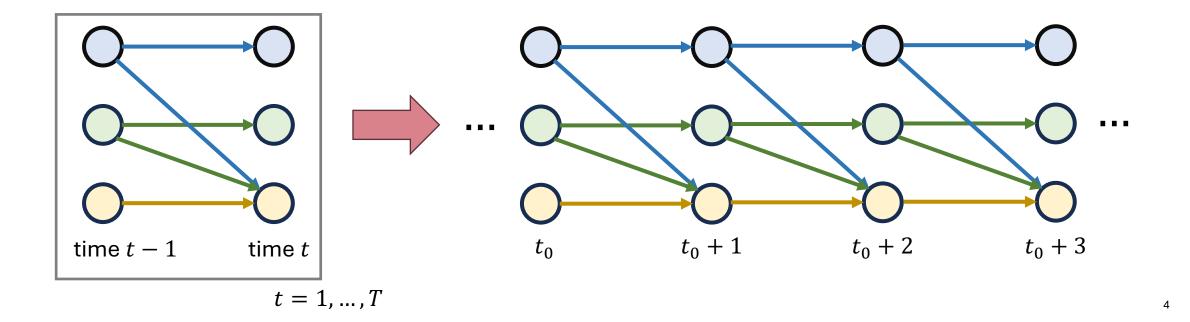
Feb 22, 2024

Problem Setup

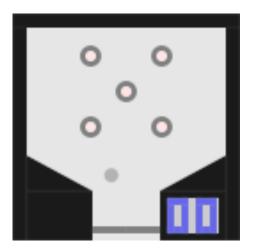


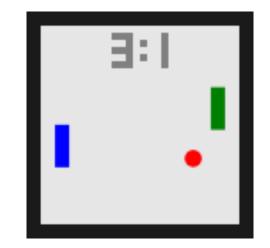


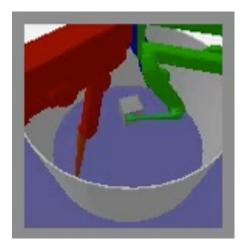
- Dynamic Bayesian Network
- Standard assumptions
 - *N***-Markov**: only variables from the last *N* time steps can cause variables at time *t*
 - **Stationary/Time Invariance**: transition model stays the same across time steps

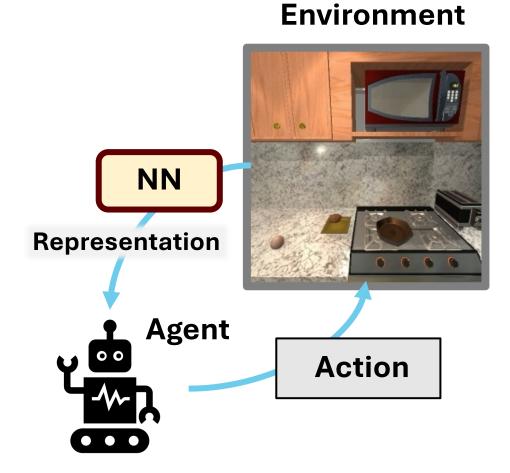


• All causal variables evolve over time and may differ between two time steps









Representation Learning Tasks

What are the causal variables of the environment?

How do they interact with each other?

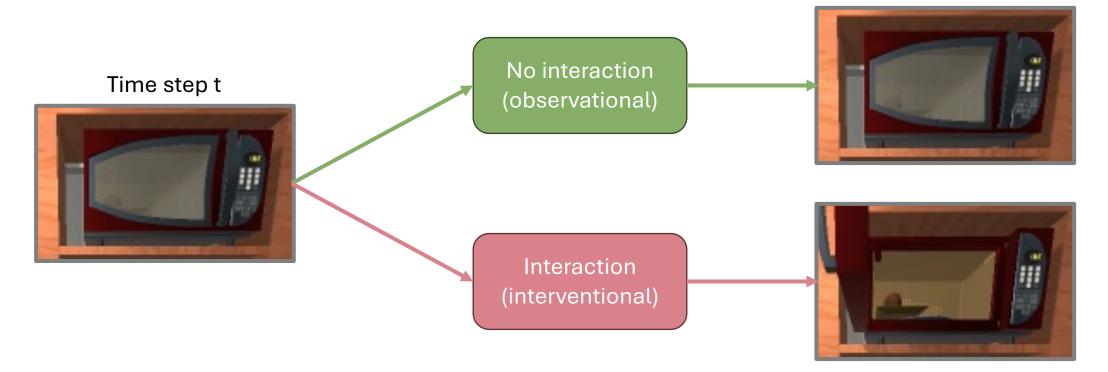
How can the agent intervene on causal variables?

- **iVAE** [Khemakhem et al., 2020] temporality as auxiliary variable, parametric assumptions
- **DMS** [Lachapelle et al., 2022] graphical assumption (mechanism sparsity), exponential family
- LEAP [Yao et al., 2022ab] sufficient mechanism variability over regimes/environments
- **Properties of Mechanisms** [Ahuja et al., 2022] known functional form of mechanisms
- **CITRIS** [Lippe et al., 2022] non-parameteric, known intervention targets
 - iCITRIS [Lippe et al., 2023a] instantaneous effects

BISCUIT – non-parameteric, arbitrary graphs, unknown <u>binary</u> interactions

BISCUIT: Binary Interactions

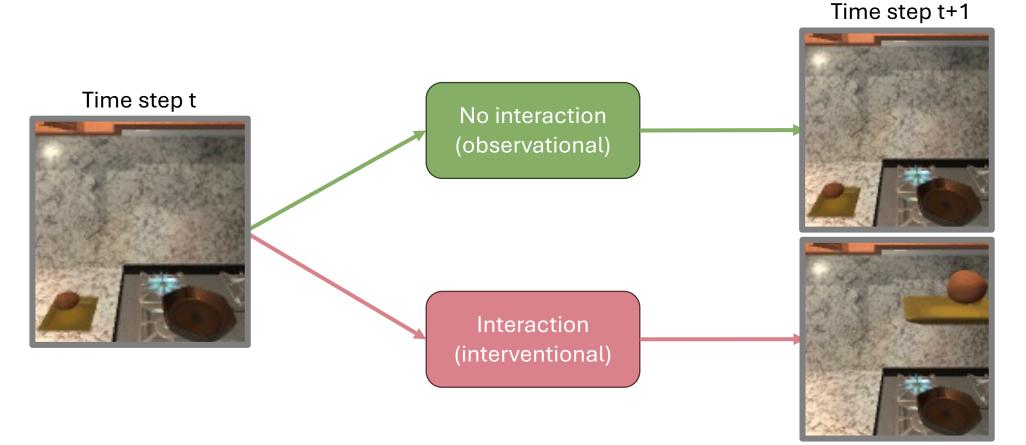
Key assumption: Interactions between the agent and causal variables can be described by **binary variables**



Time step t+1

BISCUIT: Binary Interactions

Key assumption: Interactions between the agent and causal variables can be described by **binary variables**



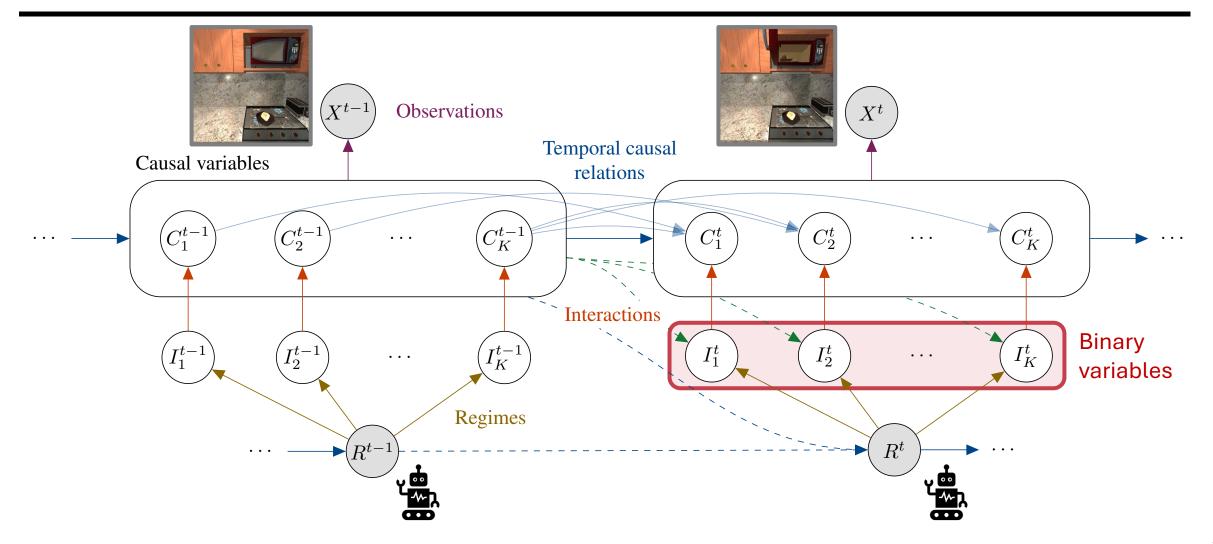
9

BISCUIT: Binary Interactions

Key assumption: Interactions between the agent and causal variables can be described by **binary variables**

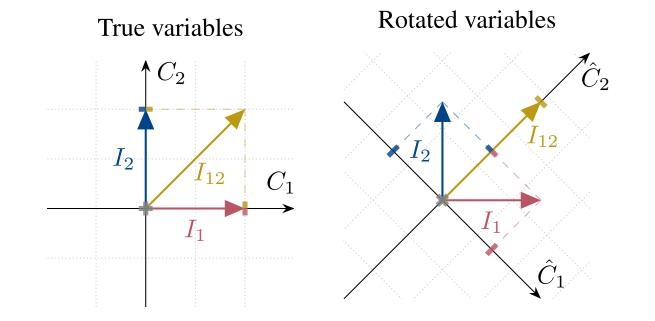
- Causal variables can be continuous values, evolving stochastically over time
- Certain interactions cause unknown interventions, changing corresponding mechanisms
- Realistic assumption in many RL environments: observational = no agent-variable interaction, interventional = agent interacting with variable

BISCUIT: Causal Model



Binary Interactions enable Identifiability

- Knowing each variable has only two mechanisms helps identify difficult cases
- Example: Additive Gaussian Noise $C_i^t = \mu_i (C^{t-1}, I_i^t) + \epsilon_i, \ \epsilon_i \sim \mathcal{N}(0, \sigma^2)$
 - Both true and rotated variables model the same distribution, but under interventions, only the true variables have two means

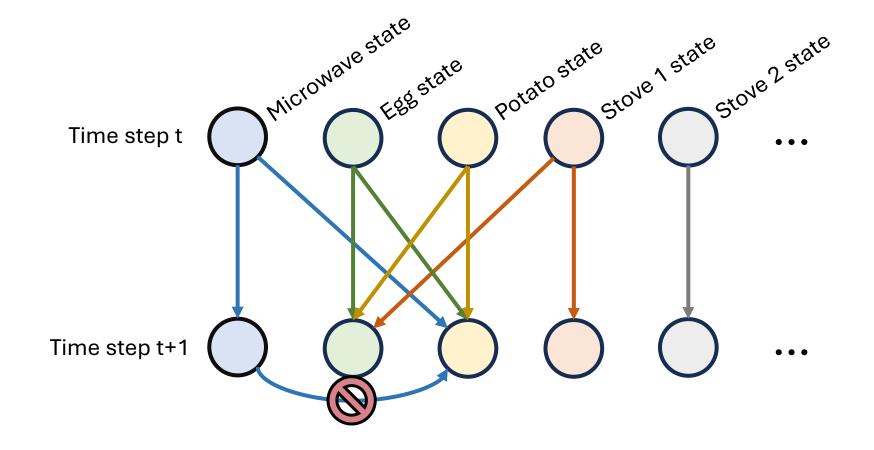


Identifiability Assumptions

- **Assumption 2**: interaction variables of different causal variables are not deterministic functions of each other
 - Implies that two variables are not always interacted with at the same time
 - Distinct interaction patterns
- If the interaction variables I_i^t are independent of C^{t-1} , only requires $\lfloor \log_2 K \rfloor + 2$ actions/values of R^t
 - Example: agent with random policy

Identifiability Assumptions

• Assumption 3: Causal Relations can be resolved over time



Identifiability Assumptions

- **Assumption 4**: The causal mechanisms vary sufficiently over time or on interactions
 - Prevents cases like interventional and observational distribution being identical
 - Supports many common setups like additive Gaussian noise models or more complex distributions

A. (**Dynamics Variability**) Each variable's log-likelihood difference is twice differentiable and not always zero:

$$\forall C_i^t, \exists C^{t-1} \colon \frac{\partial^2 \Delta(C_i^t | C^{t-1})}{\partial (C_i^t)^2} \neq 0;$$

B. (*Time Variability*) For any $C^t \in C$, there exist K + 1different values of C^{t-1} denoted with $c^1, ..., c^{K+1} \in C$, for which the vectors $v_1, ..., v_K \in \mathbb{R}^{K+1}$ with

$$v_i = \begin{bmatrix} \frac{\partial \Delta \left(C_i^t | C^{t-1} = c^1 \right)}{\partial C_i^t} & \dots & \frac{\partial \Delta \left(C_i^t | C^{t-1} = c^{K+1} \right)}{\partial C_i^t} \end{bmatrix}^T$$

are linearly independent.

BISCUIT: Identifiability Results

Assumption 1: Interactions between agent and causal variables can be described by **binary variables**

Assumption 2: All causal variables have different interaction patterns

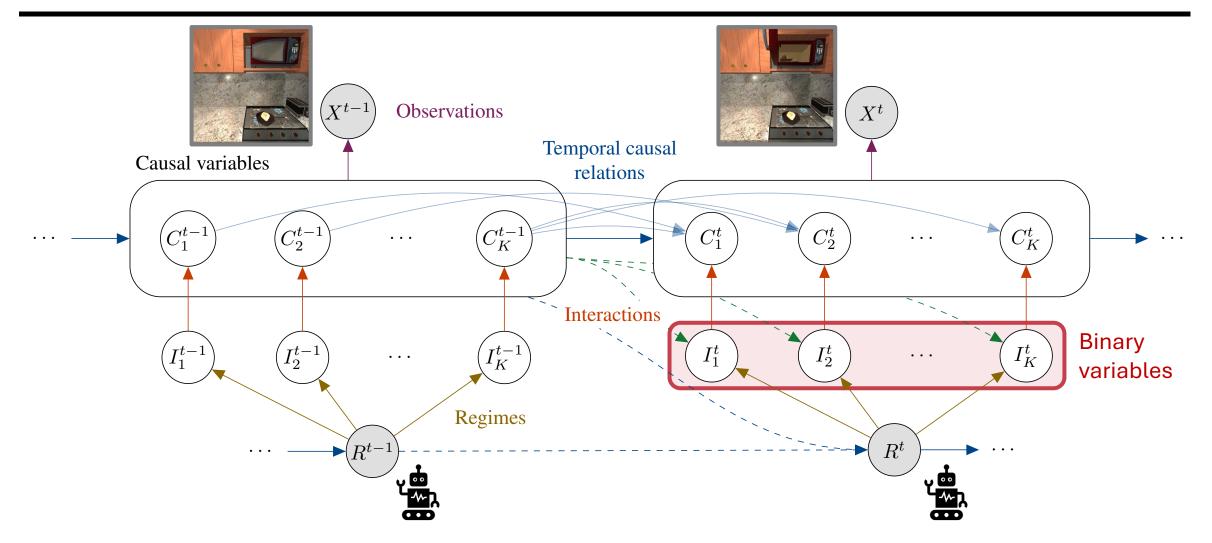
Assumption 3: Causal Relations can be resolved over time

Assumption 4: The causal mechanisms vary sufficiently over time or on interactions

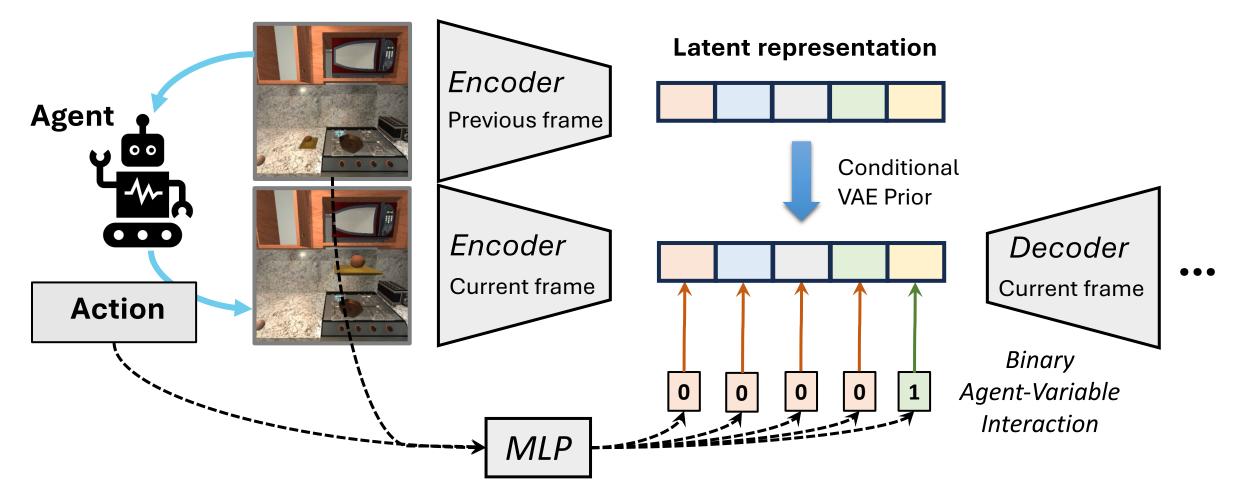
Identifiability Result

The causal variables can be identified up to permutation and element-wise transformations.

BISCUIT: Causal Model (Reminder)



BISCUIT: Architecture



BISCUIT: Architecture

• Loss function:

$$\mathcal{L}_{t} = -\mathbb{E}_{q_{\phi}(z^{t}|x^{t})} [\log p_{\theta}(x^{t}|z^{t})] + \mathbb{E}_{q_{\phi}(z^{t-1}|x^{t-1})} \left[KL \left(q_{\phi}(z^{t}|x^{t}) || p_{\omega}(z^{t}|z^{t-1}, R^{t}) \right) \right]$$
Reconstruction
Prior modeling
Encoder
Decoder
Prior

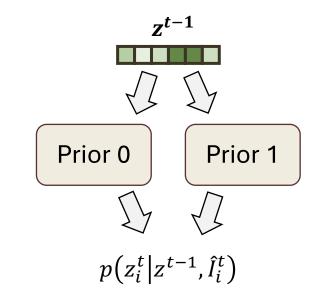
• Prior structure:

$$p_{\omega}(z^{t}|z^{t-1}, R^{t}) = \prod_{i} p_{\omega}\left(z_{i}^{t}|z^{t-1}, f_{i}(R^{t}, z^{t-1})\right)$$

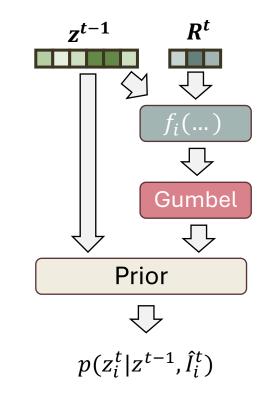
Binary function output

- Prior $p(z_i^t | z^{t-1}, \hat{l}_i^t)$
 - $\hat{I}_i^t = f_i(z^{t-1}, R^t)$

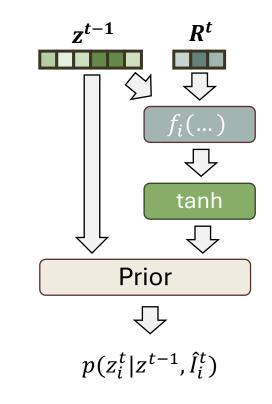
- Prior $p(z_i^t | z^{t-1}, \hat{l}_i^t)$
 - $\hat{I}_i^t = f_i(z^{t-1}, R^t)$
- Option 1: Marginalizing
 - $p(z_i^t | z^{t-1}, \hat{l}_i^t) = p(\hat{l}_i^t = 0 | ...) p(z_i^t | z^{t-1}, 0) + p(\hat{l}_i^t = 1 | ...) p(z_i^t | z^{t-1}, 1)$
 - Converges to $p(z_i^t | z^{t-1}, 0) = p(z_i^t | z^{t-1}, 1)$



- Prior $p(z_i^t | z^{t-1}, \hat{l}_i^t)$
 - $\hat{I}_i^t = f_i(z^{t-1}, R^t)$
- Option 1: Marginalizing
- Option 2: Gumbel Sigmoid
 - $\hat{I}_i^t = \text{GumbelSigmoid}(f_i(z^{t-1}, R^t))$
 - High variance causes local minima



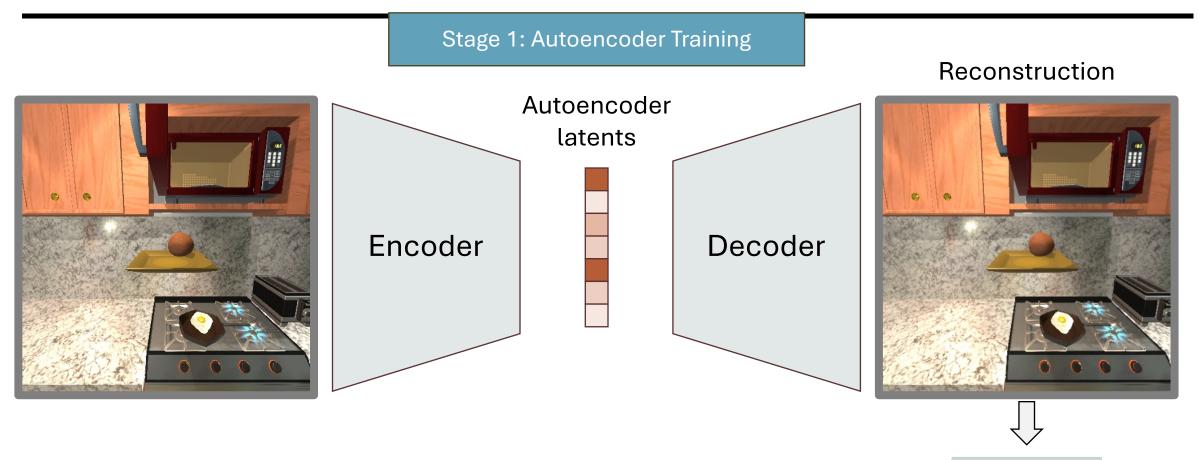
- Prior $p(z_i^t | z^{t-1}, \hat{l}_i^t)$
 - $\hat{I}_i^t = f_i(z^{t-1}, R^t)$
- Option 1: Marginalizing
- Option 2: Gumbel Sigmoid
- Option 3: Continuous Relaxation
 - $\hat{I}_i^t = \tanh\left(\frac{f_i(z^{t-1}, R^t)}{\tau}\right)$
 - Smooth optimization
 - Decrease temperature over training



VAE: Competing Losses



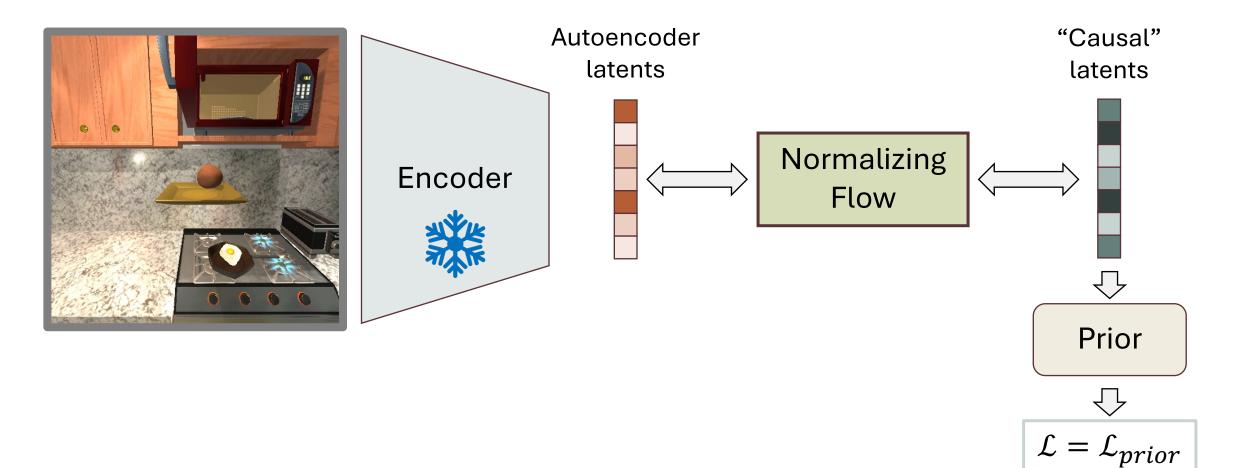
AE+NF: Splitting Objectives



$$\mathcal{L} = \mathcal{L}_{rec}$$

AE+NF: Splitting Objectives

Stage 2: Normalizing Flow Training

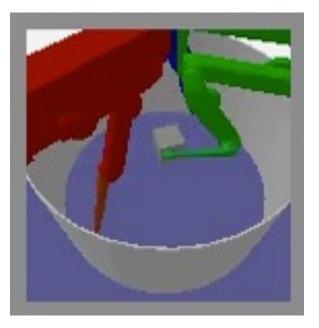


26

Experiments

Synthetic Environment

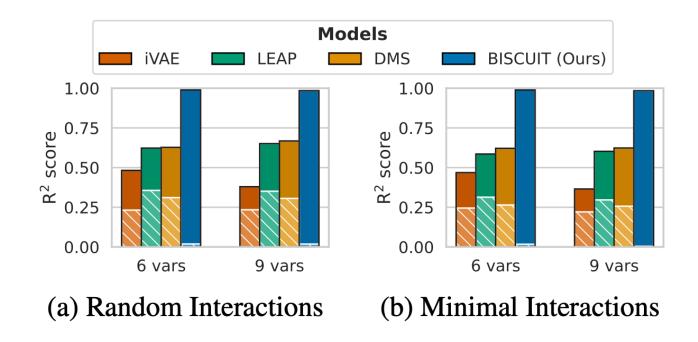
CausalWorld



iTHOR

Synthetic Environments

- Evaluated on synthetic dataset with additive Gaussian noise model
- Identifies causal variables well, also under mininal bound of interactions

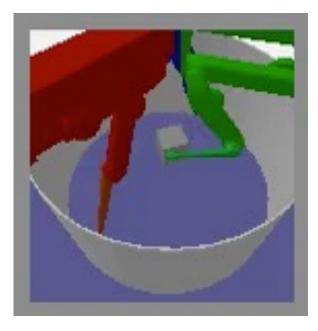


CausalWorld – Robotic Trifinger

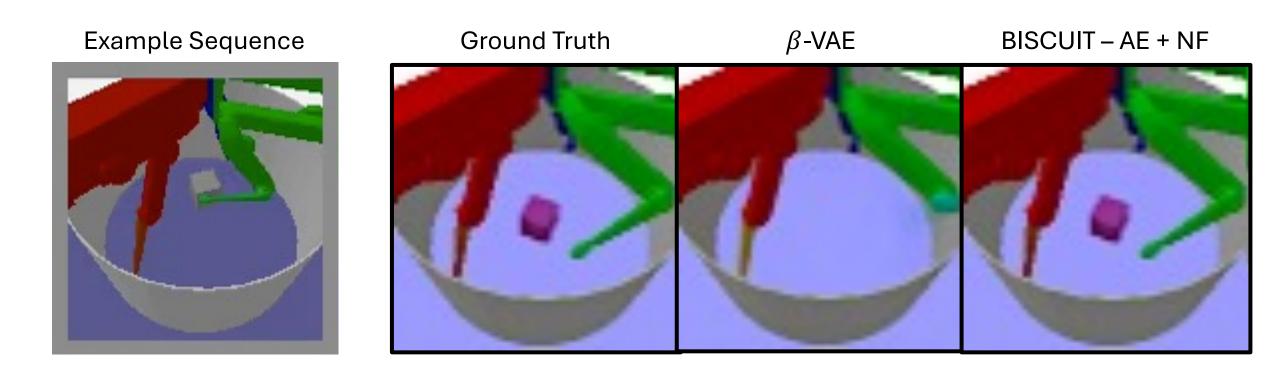
- Tri-finger robot interacting with its environment and objects
 - Causal variables include object position, frictions, colors, etc.
- Action: 9-dimensional motor angles (3 per finger)
- BISCUIT identifies causal variables accurately

Accuracy of learned causal variables (higher is better / lower is better)

Models	CausalWorld
iVAE (Khemakhem et al., 2020a)	0.28 / 0.00
LEAP (Yao et al., 2022b)	0.30 / 0.00
DMS (Lachapelle et al., 2022b)	0.32/0.00
BISCUIT-NF (Ours)	0.97 / 0.01

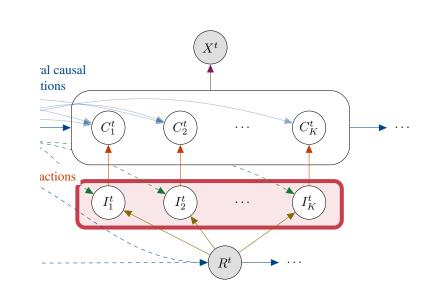


CausalWorld – AE + NF



CausalWorld – Learned Interactions

les	F1 scores for learned interaction variables							-10	
ı Vari	Finger 1 - Color	45.1	7.1	8.9	5.2	4.8	3.5	16.6	-1.0
	Finger 2 - Color	6.2	47.2	8.6	4.8	5.1	3.1	24.7	-0.8
	Finger 3 - Color	8.5	6.6	50.1	3.5	3.6	3.9	20.2	-0.6
	Floor Friction	4.3	3.9	4.8	94.8	3.4	3.9	4.1	0.0
	Stage Friction	4.4	5.4	3.6	4.5	96.8	4.8	3.1	-0.4
	Cube Friction	4.8	3.5	3.2	5.8	5.9	93.2	5.4	-0.2
	Cube State	18.0	16.0	21.8	4.3	3.4	4.5	72.1	- 0.0
Le		B Finger 1 - Color	pung Finger 2 - Color	truger 3 - Color	Floor Friction	ucition Stage Friction	Cube Friction Varia	Cube State	- 0.0



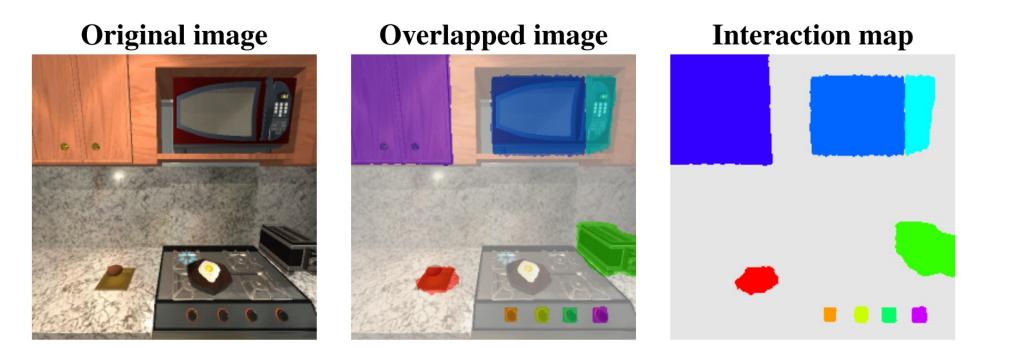
iTHOR

- Kitchen environment with 10 causal variables
 - Cabinet (open/closed)
 - Microwave (open/closed)
 - Microwave (on/off)
 - Egg (position, broken, cooked)
 - Plate/potato (position)
 - 4x Stove burner (on/off, burning)
 - Toaster (on/off)
- Actions represented as x-y coordinate of a randomly sampled object pixel

Models	iTHOR
iVAE (Khemakhem et al., 2020a)	0.48 / 0.35
LEAP (Yao et al., 2022b)	0.63 / 0.45
DMS (Lachapelle et al., 2022b)	0.61 / 0.40
BISCUIT-NF (Ours)	0.96 / 0.15

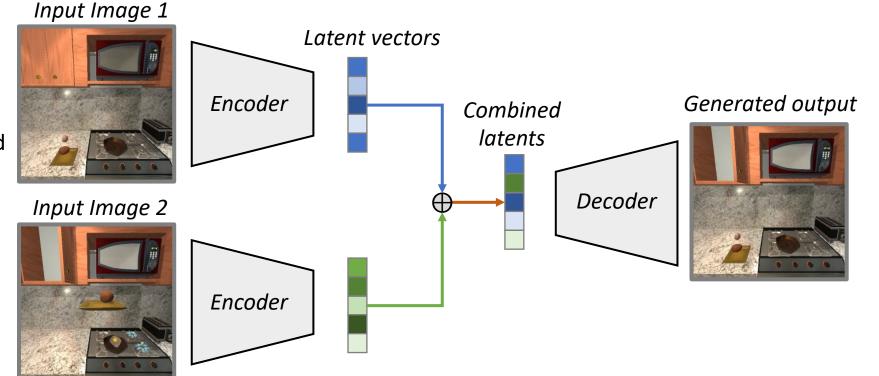
iTHOR – Interaction Maps

- Visualize learned interaction variables by the x-y locations they are active
- Each causal variable shown in different color



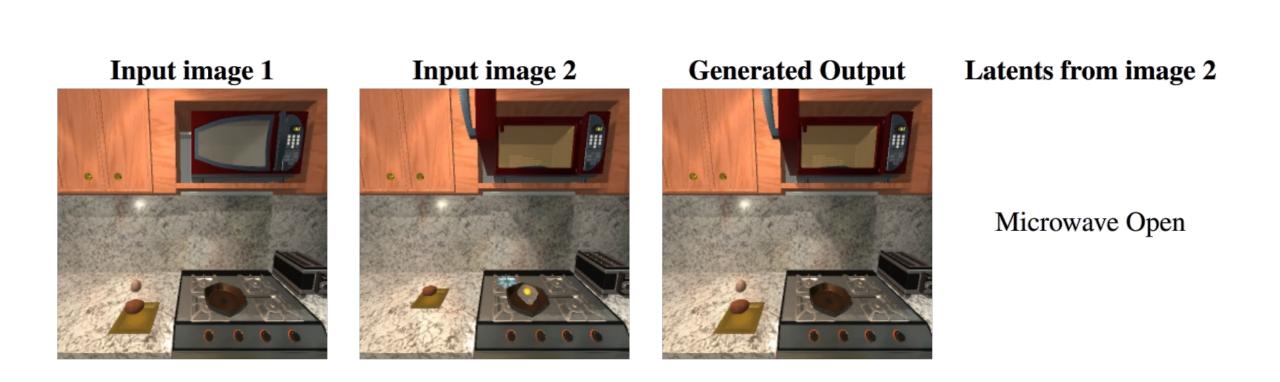
iTHOR – Triplet Evaluation

- Test compositional generation ability of latent space
- Suitable across various identifiability classes



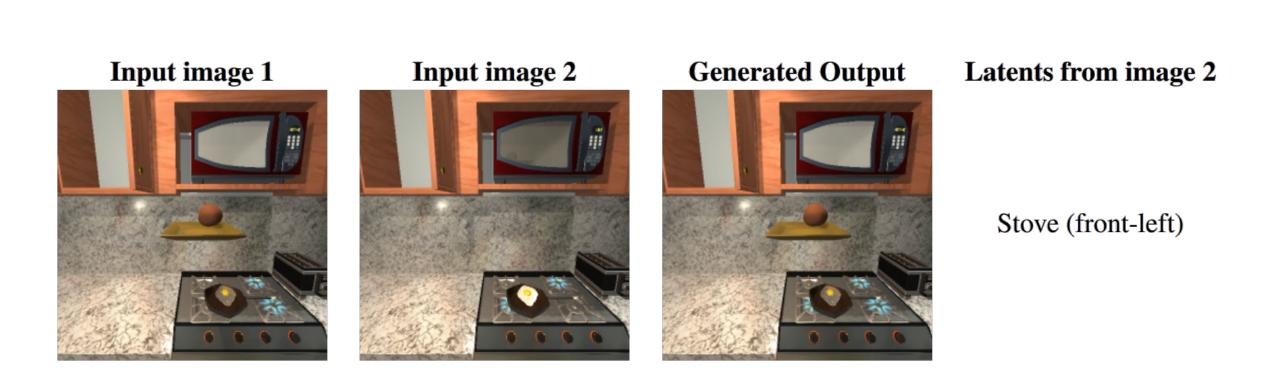
Goal Open Cabinet Turn on Microwave Keep other variables fixed

iTHOR – Triplet Evaluation



35

iTHOR – Triplet Evaluation



iTHOR – BISCUIT Demo

Demo: <u>https://colab.research.google.com/github/phlippe/BISCUIT/blob/main/demo.ipynb</u>

Conclusion

- BISCUIT identifies causal variables from interactive environments
- Key assumption: binary interaction variables describe agent-causal variable interactions
- Applicable to a variety of robotic and embodied AI environments
- Ability to 'imagine' by performing latent interventions
- Identifies actions to perform interventions

Project website and demo: phippe.github.io/BISCUIT/

Collaborators

Sara Magliacane

Sindy Löwe

Yuki Asano

Taco Cohen

References

[Lippe et al., 2023b] Lippe P, Magliacane S, Löwe S, Asano YM, Cohen T, Gavves E. BISCUIT: Causal Representation Learning from Binary Interactions. In 39th Conference on Uncertainty in Artificial Intelligence, 2023. Project page https://phlippe.github.io/BISCUIT/.

[Ahuja et al., 2022] Ahuja K, Hartford J, Bengio Y. Properties from mechanisms: an equivariance perspective on identifiable representation learning. In International Conference on Learning Representations 2022.

[Khemakhem et al., 2020] Khemakhem, I., Kingma, D., Monti, R., and Hyvarinen, A. Variational Autoencoders and Nonlinear ICA: A Unifying Framework. In *Proceedings of the Twenty Third Inter- national Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*. PMLR, 2020.

[Lachapelle et al., 2022] Lachapelle, S., Rodriguez, P., Le, R., Sharma, Y., Everett, K. E., Lacoste, A., and Lacoste-Julien, S. Disentanglement via Mechanism Sparsity Regularization: A New Principle for Nonlinear ICA. In First Conference on Causal Learning and Reasoning, 2022.

[Lippe et al., 2022] Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. CITRIS: Causal Identifiability from Temporal Intervened Sequences. In Proceedings of the 39th International Conference on Machine Learning, ICML, 2022.

[Lippe et al., 2023a] Lippe, P., Magliacane, S., Löwe, S., Asano, Y. M., Cohen, T., and Gavves, E. Causal representation learning for instantaneous and temporal effects in interactive systems. In The Eleventh International Conference on Learning Representations, 2023.

[Yao et al., 2022a] Yao, W., Chen, G., and Zhang, K. Temporally Disentangled Representation Learning. In Advances in Neural Information Processing Systems 35, NeurIPS, 2022.

[Yao et al., 2022b] Yao, W., Sun, Y., Ho, A., Sun, C., and Zhang, K. Learning Temporally Causal Latent Processes from General Temporal Data. In International Conference on Learning Representations, 2022.