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Causal Representation Learning

• Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?

• Crucial for reasoning, planning, generalization, identifying cause-effect relations, etc. 
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Causal Representation Learning
Challenges

• High-dimensional input ↔ low-dimensional causal system

• Causal variables depend on each other

• Multiple (non-)causal representations can describe the same system
• Is a ‘causal’ representation unique?
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Causal Representation Learning
Forms

Temporal CRL
• Temporal sequences; all causal

variables evolve over time
• Common RL environments

• Temporality gives strong bias
Examples: [Lippe et al., 2022ab; Lachapelle et al., 
2022 ab; Yao et al., 2022ab; Khemakhem et al., 2020; 
Hyvärinen et al.; 2019]
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Counterfactual CRL
• Pairs of images where only a 

subset of variables change
• Requires a lot of control over 

system; not possible in real world 
(Pearl, 2009) 

Examples: [Brehmer et al., 2022; 
Locatello et al., 2020; von Kügelgen et 
al., 2021; Ahuja et al., 2022] 



Causal Identifiability from Temporal Intervened Sequences
Setup
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Causal Identifiability from Temporal Intervened Sequences
What is a Causal Variable?
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Abstraction allows for:
• Simpler graphs
• Fewer requirements to find it
• Scalability



Causal Identifiability from Temporal Intervened Sequences
Minimal Causal Variables
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• Abstraction ⇒ Multidimensional causal variables

• Identifying abstraction level ⇒ Interventions

• Augment causal graph with intervention targets
• 𝐼! = 1 ⇒ Intervention on 𝐶!
• 𝐼! = 0 ⇒ Passively observing 𝐶!

• Minimal causal variable 𝑠!"#$ 𝐶! : 
intervention-dependent part of a
multidimensional causal variable

• Causal representation depends
on the abilities of an agent/expert

ball

Env
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Causal Identifiability from Temporal Intervened Sequences
Theoretical Results
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• Main theoretical result: we can identify the minimal causal variables up to invertible, 
component-wise transformations if:
• No intervention target 𝐼"#$! is a deterministic function of any other
• Following intervention design, log% 𝐾 + 2 experiments are sufficient for this [Lippe et al., 2022c]CITRIS: Causal Identifiability from Temporal Intervened Sequences
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Figure 8: Splitting the causal variable Ci in its minimal causal split. (a) In the original
causal graph, Ct+1

i has Ct (or an eventual subset of it) and I
t+1

i as its parents. (b) In the
minimal causal split, only the variable part s

var

i (Ct+1

i ) depends on the intervention. The
invariable part, sinvi (Ct+1

i ), is independent of It+1

i , hence giving us an additional conditional
independence. Note that svari (Ct+1

i ) and s
inv

i (Ct+1

i ) are conditionally independent.

For this, we first need to distinguish between the variable and invariable information of a
causal variable Ci, which is introduced in Appendix B.4.1. Next, we will discuss the causal
representation function class � for the setting where interventions are independent, i.e.
I
t+1

i ?? I
t+1

j |Ct for any i 6= j, and finally extend it to confounded interventions.

B.4.1 Intervention-independent variables

Interventions allow us to identify a causal variable by seeing the caused change in its
conditional distribution. However, especially when talking about multidimensional causal
variables, one might have interventions that only a↵ect a subset of the actual causal variable
dynamics, while the rest remains independent of the intervention. As we will see later,
this can have an influence on the identifiability result, making the found causal factors
intervention-dependent.

We start by considering a single causal factor Ci 2 DMi
i in the setup of Figure 7 under our

previously discussed assumptions. Suppose for each causal factor Ci 2 DMi , there exists an
invertible map si : DMi

i ! Dvar

i ⇥Dinv

i that splits the domain DMi of Ci into a part that is
invariant and a part that is variant under intervention. We denote the two parts of this map as

si(C
t
i ) = (svari (Ct

i ), s
inv

i (Ct
i )) (16)

The split s must be invertible, so that we can map back and forth between DMi
i and

Dvar

i ⇥ Dvar

i without losing information. Furthermore, to be called a split, s must satisfy
s
inv

i (Ct
i ) ?? I

t
i | pa(Ct

i ), i.e., s
inv

i (Ct
i ) is independent of the intervention variable I

t
i given

the parents of Ct
i . Further, both parts of the split must be conditionally independent, i.e.

s
inv

i (Ct
i ) ?? s
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i (Ct
i ) | pa(Ct

i ), I
t
i . Hence, we can write their distributions as:
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This means that svari (Ct
i ) will contain the manipulable, or variable, part of Ct

i . In contrast,
s
inv

i (Ct
i ) is the invariable part of Ct

i which is independent of the intervention. This relation
is visualized in Figure 8.

For any causal variable, there may exist multiple possible splits, but there is always at
least the trivial split where Dvar

i = DMi
i is the original domain of Ci, and Dinv

i = {0} is the
one-element set (no invariant information). However, there might also exist splits in which
s
inv

i (Ct+1

i ) 6= ;. For instance, in a multidimensional causal variable Ĉ 2 R3, if an intervention
only a↵ects the first two dimensions while the last one remains una↵ected, we obtain the
split svar([Ĉ1, Ĉ2]), sinv(Ĉ3). Nonetheless, this can even happen for scalar variables, since we
do not constraint the possible distributions of Ci. We give an example for such a case below.

Example 1 Consider the scenario in Figure 9 where we have a ball with its two positional
dimensions x and y as its causal factors. For now, we only focus on its x position (in the
remainder of the section, xt refers to the position of the ball on the x-axis, not the full
observation X

t which we denote by a capital letter). Over time, the ball moves within one of

22



CITRIS Architecture
CITRIS-NF
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CITRIS: Causal Identifiability from Temporal Intervened Sequences
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t} where
x

t
, x

t+1 represent the observations at time step t and t + 1
respectively, and I

t 2 [0, 1]K is a binary vector where I
t
i de-

notes whether the causal variable Ci has been intervened on
or not during the transition from x

t to x
t+1. We aim to learn

an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t) with z

t
, z

t+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(zt+1|zt
, I

t) =
KY

i=1

p�

�
z

t+1
 i

|zt
, I

t
i

�
(1)

where �i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  
⇤ are the pa-

rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(zt+1

 0
|zt

, I
t). Then, the model �⇤

, ✓
⇤
, 

⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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ditional distribution strictly depends on it. Examples that
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[TODO: Argue why intervention independent parts are
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independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]
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• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.
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t} where
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t+1 represent the observations at time step t and t + 1
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t 2 [0, 1]K is a binary vector where I
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notes whether the causal variable Ci has been intervened on
or not during the transition from x

t to x
t+1. We aim to learn

an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt
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t) with z
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t+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:
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where �i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  
⇤ are the pa-

rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
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, ✓
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⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(zt+1|zt
, I

t) =
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i=1
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�
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t+1
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|zt
, I

t
i

�
(1)

where �i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  
⇤ are the pa-

rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(zt+1

 0
|zt

, I
t). Then, the model �⇤

, ✓
⇤
, 

⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{C
t
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation X

t =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations X
t under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector I

t 2 {0, 1}K where I
t
i = 1 refers to an intervention

on the causal variable C
t
i . We also assume that interventions

targets I
t
1, ..., I

t
K are independent of each other given the

prior state: I
t
i ?? I

t
j |C

t�1
1 , ..., C

t�1
K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t+1} where
x

t
, x

t+1 2 RN represent the observations at time step t and
1Note that when two variables Ci and Cj can only be inter-

vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and I
t+1 describes the intervention targets

at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM

, M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t+1) with z

t
, z

t+1 2 RM

being the latent variables for x
t and x

t+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt
, I

t+1) =
KY

i=0

p�

�
z

t+1
 i

|zt
, I

t+1
i

�
(1)

where �i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and I

t+1
0 =

;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation X

t =
o(Ct
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2, ..., C
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations X
t under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector I

t 2 {0, 1}K where I
t
i = 1 refers to an intervention

on the causal variable C
t
i . We also assume that interventions

targets I
t
1, ..., I

t
K are independent of each other given the

prior state: I
t
i ?? I
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j |C

t�1
1 , ..., C

t�1
K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t+1} where
x

t
, x

t+1 2 RN represent the observations at time step t and
1Note that when two variables Ci and Cj can only be inter-

vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and I
t+1 describes the intervention targets

at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM

, M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t+1) with z

t
, z

t+1 2 RM

being the latent variables for x
t and x

t+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt
, I
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(1)

where �i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and I

t+1
0 =

;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation X

t =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations X
t under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector I

t 2 {0, 1}K where I
t
i = 1 refers to an intervention

on the causal variable C
t
i . We also assume that interventions

targets I
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1, ..., I

t
K are independent of each other given the

prior state: I
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i ?? I

t
j |C
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1 , ..., C

t�1
K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t+1} where
x

t
, x

t+1 2 RN represent the observations at time step t and
1Note that when two variables Ci and Cj can only be inter-

vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and I
t+1 describes the intervention targets

at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM

, M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t+1) with z

t
, z

t+1 2 RM

being the latent variables for x
t and x

t+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:
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where �i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and I

t+1
0 =

;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t} where
x

t
, x

t+1 represent the observations at time step t and t + 1
respectively, and I

t 2 [0, 1]K is a binary vector where I
t
i de-

notes whether the causal variable Ci has been intervened on
or not during the transition from x

t to x
t+1. We aim to learn

an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t) with z

t
, z

t+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(zt+1|zt
, I

t) =
KY

i=1

p�

�
z

t+1
 i

|zt
, I

t
i

�
(1)

where �i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  
⇤ are the pa-

rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(zt+1

 0
|zt

, I
t). Then, the model �⇤

, ✓
⇤
, 

⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t} where
x

t
, x

t+1 represent the observations at time step t and t + 1
respectively, and I

t 2 [0, 1]K is a binary vector where I
t
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notes whether the causal variable Ci has been intervened on
or not during the transition from x

t to x
t+1. We aim to learn

an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t) with z

t
, z

t+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(zt+1|zt
, I

t) =
KY

i=1
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�
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t+1
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|zt
, I

t
i

�
(1)

where �i = {j 2 {1, ..., M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ..., M} ! {0, ..., K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  
⇤ are the pa-

rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(zt+1

 0
|zt

, I
t). Then, the model �⇤

, ✓
⇤
, 

⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{C
t
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation X

t =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations X
t under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector I

t 2 {0, 1}K where I
t
i = 1 refers to an intervention

on the causal variable C
t
i . We also assume that interventions

targets I
t
1, ..., I

t
K are independent of each other given the

prior state: I
t
i ?? I

t
j |C

t�1
1 , ..., C

t�1
K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t+1} where
x

t
, x

t+1 2 RN represent the observations at time step t and
1Note that when two variables Ci and Cj can only be inter-

vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and I
t+1 describes the intervention targets

at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM

, M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t+1) with z

t
, z

t+1 2 RM

being the latent variables for x
t and x

t+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt
, I

t+1) =
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i=0
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(1)

where �i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and I

t+1
0 =

;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
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2, ..., C
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K) from

the observations X
t under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector I

t 2 {0, 1}K where I
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In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {x
t
, x

t+1
, I

t+1} where
x

t
, x

t+1 2 RN represent the observations at time step t and
1Note that when two variables Ci and Cj can only be inter-

vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and I
t+1 describes the intervention targets

at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM

, M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt

, I
t+1) with z

t
, z

t+1 2 RM

being the latent variables for x
t and x

t+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:
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where �i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and I

t+1
0 =

;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

Figure 4. Comparing the VAE and AE+NF setup of CITRIS. Left: In the VAE, the encoder and decoder provide an approximate invertible
mapping. The transition prior promotes disentanglement in the latent space by conditioning each latent variable on only one intervention
target. Right: The Normalizing Flow setup uses a pretrained autoencoder, which remains frozen during training. The flow learns to map
the autoencoder latents to a new space, that promotes the disentanglement similar to the VAE. The decoder is not needed during training.

In a second step, after the autoencoder converged, we freeze
its parameters and learn a normalizing flow (Rezende & Mo-
hamed, 2015) that maps the entangled latent representation
to a disentangled version. The invertibility of the normaliz-
ing flow ensures that no information is lost when mapping
from the entangled to the disentangled latent space, and thus
we can use the pretrained decoder to reconstruct the obser-
vations without requiring any fine-tuning. Compared to the
VAE setup in Section 4.1, we replace the encoder by a suc-
cessive application of the frozen encoder and a normalizing
flow on the encoded latents, shown in Figure 4. Besides that,
we deploy the same setup, using both the transition prior
structure and target classifier.

Compared to the VAE setup, this approach has three main
benefits. First, the autoencoder can be trained on observa-
tional data alone, potentially reducing the amount of inter-
ventional data required. Second, learning a separate autoen-
coder provides an opportunity for generalizing causal factors
beyond the known dataset. For instance, one could train an
autoencoder on two datasets, where only one has interven-
tions, e.g. synthetic and real-world data. Then, since the au-
toencoder uses a joint latent space for both datasets, training
the normalizing flow on only the dataset with interventions
can lead to a disentanglement function that generalizes to the
purely observational dataset. We verify the viability of this
approach in a restricted setting in Section 6.2, which opens
up great potential to practical applications. Finally, the setup
is easier to optimize since the autoencoder can compress the
information in an almost unrestricted latent space, while the
normalizing flow solely focuses on disentanglement.

5. Related Work
Identifying independent factors of variations from data is a
well-studied field in machine learning (Higgins et al., 2017;
Klindt et al., 2021; Kumar et al., 2018; Locatello et al.,
2019; 2020a;b; Reed et al., 2014). One of the first lines of

work is Independent Component Analysis (ICA) (Comon,
1994; Hyvärinen et al., 2001). ICA tries to recover indepen-
dent latent variables that were transformed by some invert-
ible transformation. Although not generally possible in the
non-linear case (Hyvärinen & Pajunen, 1999), ICA was re-
cently extended to this setting by exploiting auxiliary vari-
ables under which the latents become conditionally mutu-
ally independent (Hyvärinen & Morioka, 2016; Hyvärinen
et al., 2019). Several follow-up works extended this work to
deep learning architectures like VAEs (Khemakhem et al.,
2020a;b; Sorrenson et al., 2020; Zimmermann et al., 2021).
Recent works draw a connection between causality and ICA
(Gresele et al., 2021; Monti et al., 2019). In particular,
Lachapelle et al. (2022); Yao et al. (2022) discuss identifi-
ability from temporal sequences and bring it into context
to causality. While Lachapelle et al. (2022) can model in-
terventions as external actions, Yao et al. (2022) can model
soft interventions through their non-stationary noise. On
the other hand, they do not exploit the knowledge of the in-
tervention targets as we do and therefore require additional
assumptions in terms of sufficient variation. Moreover, both
of these works require scalar causal variables, while CIT-
RIS generalizes to multidimensional causal factors.

A second, related line of work is causal representation learn-
ing (Schölkopf et al., 2021), which aims at discovering
causal structures and variables from data. For instance, Lo-
catello et al. (2020a) showed that one can identify indepen-
dent latent causal factors from pairs of observations that
only differ in k causal factors. Yang et al. (2021) propose
a VAE that integrates a structural causal model in its prior,
but requires the true causal variables as labels during train-
ing. von Kügelgen et al. (2021) demonstrated that common
contrastive learning methods can block-identify the causal
variables that remain unchanged under augmentations. CIT-
RIS similarly identifies multidimensional causal factors as a
block, and, furthermore, disentangles individual causal fac-
tors by grouping the latent space.
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Figure 17. An example sequence of 7 frames (left to right) in the Interventional Pong dataset, where the environment is being reset at the
fourth time step. The ball is returned to the center position and gets a new velocity direction, as well as the paddles being moved to new
random positions. The score of the respective player is increased as well.

ball x ball y ball vel dir pleft y pright y score

ball x ball y ball vel dir pleft y pright y score

Figure 18. Causal relations between all dimensions of the causal factors of the Interventional Pong dataset. Note that although the graph is
very dense, not all relations have an effect on the causal variables at each time step. For instance, the velocity only influences the paddles
and the score when the ball x position moved by the velocity ends up in one of the two boundaries.

1. Using the velocity direction at the previous time step, we determine the velocity in x and y direction. We then move
the x-position of the ball accordingly.

2. If this new ball-x position hits one of the two borders, we increase the score of the corresponding player and reset
the game. Resetting the game includes setting the ball to the center of the field, randomly sampling a ball velocity
direction, and replacing the position of the paddles with a new random position between �0.66 and 0.66. The latter is
done to prevent the paddles of ending up in one of the two corners when the ball is reset. An example of resetting the
environment is shown in Figure 17.

3. If the game was not reset, we do the following steps:

• We first move the two paddles according to their dynamics, as described before, moving towards the ball.
• We move the ball y position by the velocity in y direction. If the new ball y position collides with the upper or

lower boundary, we calculate the new y-position it would have after the collision, and mirror the velocity angle on
the x-axis.

• If the new ball x and y position collide with one of the two paddle positions in the previous time step, we reflect
the ball accordingly and calculate its new x position, as well as mirroring the velocity angle on the y-axis.

• Finally, we add Gaussian noise with standard deviation of 0.015 to the ball x and y position, as well as the velocity
direction. The small standard deviation was chosen to keep the dynamics similar to Pong and not divert too much
into random movements.

4. With a chance of about 35%, we do not perform any intervention. Otherwise, we randomly sample one out of the five
causal factors (excluding the score), and perform an intervention as described before.

We provide the full code of the dynamics and dataset generation for this Pong environment in the supplementary. The causal
graph implied by these dynamics are shown in Figure 18. Similarly to the Temporal Causal3DIdent dataset, we generate a
dataset by sampling one long sequence with a dataset size of 100,000.

C.3. Experimental Design

In this section, we give a more detailed description of elements used in the experiments. We first discuss the evaluation via
the correlation metrics and triplet evaluation, and then describe the implementation details of the target classifier.

• CITRIS identifies the causal variables accurately

• Interventions on paddles changed their policy

• Assumption of Independent Causal Mechanisms
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Table 1. Results on the Temporal-Causal3DIdent dataset. All triplet distances have a distance at random of 1 and optimum of 0. Oracle
represents the accuracy of a CNN trained supervised to predict the causal factors from images, hence constituting a lower error limit. In
the correlation metrics, diag refers to the average score of the predicted causal factor to its true value (optimal 1), and sep for the average
of the maximum correlation per predicted causal variable besides its true factor (optimal 0). Standard deviations over 3 seeds shown in
Appendix C.1. CITRIS is able to disentangle the causal factors well, and CITRIS-NF even accurately models all 7 shapes.

Triplet evaluation distances # Correlation metrics
pos x pos y pos z rot ↵ rot � rot s hue s hue b hue o obj s Mean R

2 diag " R
2 sep # Spearman diag " Spearman sep #

Temporal-Causal3DIdent Teapot
Oracle 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 - 0.02 - - - -

SlowVAE 0.13 0.10 0.12 0.50 0.59 0.22 0.64 0.21 0.17 - 0.30 0.65 0.20 0.62 0.27
iVAE⇤ - 9dim 0.11 0.09 0.12 0.70 0.76 0.06 0.67 0.02 0.12 - 0.30 0.65 0.11 0.65 0.13
iVAE⇤ - 32dim 0.04 0.03 0.04 0.25 0.31 0.03 0.58 0.02 0.05 - 0.15 0.78 0.21 0.77 0.17

CITRIS-VAE 0.05 0.04 0.05 0.10 0.20 0.03 0.08 0.02 0.05 - 0.07 0.96 0.02 0.95 0.04
- No target classifier 0.05 0.04 0.05 0.62 0.66 0.19 0.04 0.02 0.17 - 0.20 0.79 0.15 0.76 0.12
CITRIS-NF 0.04 0.03 0.04 0.06 0.10 0.03 0.04 0.01 0.04 - 0.04 0.98 0.01 0.97 0.05

Temporal-Causal3DIdent 7-shapes
Oracle 0.08 0.06 0.08 0.06 0.09 0.04 0.04 0.01 0.04 0.00 0.05 - - - -

SlowVAE 0.44 0.25 0.41 0.69 0.75 0.25 0.57 0.10 0.14 0.37 0.40 0.61 0.23 0.59 0.27
iVAE⇤ 0.26 0.23 0.34 0.58 0.65 0.10 0.31 0.02 0.09 0.14 0.27 0.80 0.29 0.77 0.28

CITRIS-VAE 0.15 0.13 0.23 0.54 0.71 0.07 0.05 0.02 0.06 0.18 0.21 0.89 0.10 0.88 0.12
CITRIS-NF 0.12 0.08 0.11 0.09 0.14 0.05 0.05 0.02 0.06 0.00 0.07 0.98 0.04 0.97 0.08

of the predicted values against the ground truth causal fac-
tors. However, in our datasets, the causal factors are corre-
lated themselves. This makes it difficult to spot spurious cor-
relations between latents and causal factors. To overcome
this issue, we measure the correlations on a test dataset for
which we sample the causal factors independently.

Triplet Evaluation To also evaluate the decoding part of
the model, we propose another parameter-free evaluation,
triplet evaluation, to reveal complex dependencies between
latent variables. For this, we create triplets of images: the
first two are randomly sampled test images, while the third
one is created based on a random combination of causal
factors of the first two images. For example, in Figure 7, we
take the spotlight rotation and object shape from image 1,
and all other causal factors from image 2. For evaluation, we
then encode the two test images independently, perform the
combination of ground-truth causal factors as done for the
third image in latent space, and use the decoder to generate
a new image, which ideally resembles the ground truth third
image. Since the reconstruction error is not descriptive of
the errors being made, e.g. the rotation in Figure 7, we
train an additional CNN in a supervised manner that maps
images to the causal factors. With this model, we can extract
the causal factors from the generated image, and report the
average distance of these to the ground truth causal factors.

6.2. Temporal Causal3DIdent Experiments

Teapot Experiments The Causal3DIdent benchmark consti-
tutes a challenging dataset due to its various interactions of
causal factors in the high-dimensional observational space.
To slightly simplify the problem, especially for learning
a VAE on the high-dimensional observational space, we
first show experiments on the teapot shape only, Temporal-
Causal3DIdent Teapot. All results are summarized in Ta-

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Figure 7. Example triplet evaluations on the Temporal-
Causal3DIdent. In the first row, the ground truth combines the
spotlight rotation and object shape from Image 1 with all other
causal factors from Image 2. The prediction is generated by en-
coding the two images, and performing the same combination of
causal factors in latent space. The shown prediction by CITRIS-
NF only slightly differs in the object rotation. For details on the
other predictions, see Appendix D.1.

ble 1. Both the VAE and Normalizing Flow version of CIT-
RIS considerably outperformed the two baselines and were
able to achieve an average R

2 and Spearman correlation
above 0.9, while keeping the correlation between factors low.
Moreover, CITRIS-NF achieves close-to optimal scores on
the triplet evaluation, and especially outperforms the VAE-
based approaches in modeling the rotations. This is because
the autoencoder is able to reconstruct images with negligi-
ble error, while the VAE optimization involves balancing

CITRIS: Causal Identifiability from Temporal Intervened Sequences

pos o rot orot s hue s hue b hue o

pos o rot orot s hue s hue b hue o

pos o rot orot s hue s hue b hue o obj s

pos o rot orot s hue s hue b hue o obj s

Figure 23. The learned graphs of CITRIS-NF from the Temporal-Causal3DIdent dataset. False positive edges are colored red. Left:
Temporal-Causal3DIdent Teapot. The learned causal graph is identical to the ground truth graph. Since we have a single object shape, we
do not include obj s as a causal variable in the graph. Additionally, the parent set of hue o is reduced due to the constant object shape.
Right: Temporal-Causal3DIdent 7-shapes. The edge obj s!rot o is predicted due to disentangling these two variables being the hardest
task of the dataset, and small correlations remain.

(a) CITRIS-NF, R2 correlation matrix (b) CITRIS-NF, Spearman correlation matrix

Figure 24. Correlation matrices for the experiments on the Temporal-Causal3DIdent 7-shapes dataset where no intervention targets for the
causal variable hue-background are shown (left: R2 correlation, right: Spearman correlation). The set z 0 is represented by ’no variable’
in the plots of CITRIS. As intended, CITRIS learns to map the background hue to z 0 , i.e. the latents that represent all information that
does not belong to the causal variables for which we are given intervention targets. The remaining causal variables are disentangled as
well as when interventions were provided for all variables (compare to Figure 22).

between sets of latent variables that have been assigned to different causal factors. More specifically, we are trying to find
the causal graph between z

t
 0

, z
t
 1

, ..., z
t
 K

and z
t+1
 0

, z
t+1
 1

, ..., z
t+1
 K

, where the directions of the directions of the edges are
determined by t ! t + 1, and no edges within a time step exist. We find this graph by using ENCO (Lippe et al., 2022),
a continuous-optimization causal discovery method which supports the usage of arbitrary neural networks. The causal
graph is parameterized by a weight matrix � 2 RK+1⇥K+1, where �(�ij) represents the probability of having the edge
z

t
 i

! z
t+1
 j

in the causal graph. To estimate the conditional likelihoods under different causal graphs, we learn a new
autoregressive prior p"(z

t+1
 i

|zT · M, I
t+1
i ) where M is mask on the latents at time-step t according to the causal graph:

Mj = M̂ (j), M̂k ⇠ Bernoulli(�ki). In other words, we sample a causal graph, and then mask a set of latents z
t
 j

if the
causal variable Cj does not have an edge to Ci: z

t
 j

6! z
t+1
 i

. With this prior, we can then determine the gradients for � on
a held-out test set following ENCO’s gradient updates. We use a sparsity regularizer of � = 0.05 and train for 100 epochs.

We perform the experiments on two learned CITRIS-NF, one for Temporal-Causal3DIdent Teapot, and one for Temporal-
Causal3DIdent 7-shapes. The learned graphs are shown in Figure 23. For the teapot experiments, the graph is identical to the
ground truth, showing that CITRIS has indeed learned the causal variables. For the 7 shapes experiment, the model has one
false positive prediction, the edge obj s!rot o. This fits our previous discussion on the results of the 7 shape experiments
(Table 10) since the object shape and rotation was the most difficult to disentangle for all models. Hence, there remains
some correlation between the object shape and rotation in the CITRIS-NF model.

D.1.5. INTERVENTIONS ON A SUBSET OF VARIABLES

One property of CITRIS is that when interventions are only provided for a subset of variables, CITRIS is yet able to
disentangle these variables, while all remaining information is grouped into the latents z 0 . We have used this to disentangle
the score in the Interventional Pong experiments (see Section 6.3), and show here that it can also be applied to the more

Learned Causal Graph

Novel combinations of causal factors



Instantaneous Effects in Temporal Sequences

Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 14

time step 𝑡

time step 𝑡 + 1

• Common assumption: time resolves causal effects

• But what about observations at low frame rates?

⇒ Instantaneous Effects!

Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. 
Asano, Taco Cohen, and Efstratios Gavves. "iCITRIS: 
Causal Representation Learning for Instantaneous 
Temporal Effects." First Workshop on Causal 
Representation Learning (CRL), UAI 2022.



Instantaneous Effects in Temporal Sequences
Challenges

• Many more pitfalls, e.g.:

𝑝! 𝐶! 𝑝% 𝐶% vs   𝑝! 𝐶! 𝑝̂% 𝐶% + 𝐶!|𝐶!

• Solution: partially-perfect interventions 
that remove instantaneous parents

⇒ Minimal causal variables become
identifiable 

• Chicken-and-egg situation:
• Without graph, no causal variables
• Without causal variables, no graph

Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 15



iCITRIS: CRL for Instantaneous Temporal Effects
Architecture
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0

p�

�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify



iCITRIS: CRL for Instantaneous Temporal Effects
Experiments
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Table 11: Experimental results on the Causal Pinball dataset over three seeds.
Model R2 Spearman Triplets SHD (Instant) SHD (Temp)

iCITRIS-ENCO 0.98 / 0.04 0.99 / 0.17 0.02 0.67 3.67
(±0.00) / (±0.01) (±0.00) / (±0.03) (±0.00) (±0.58) (±1.15)

iCITRIS-NOTEARS 0.98 / 0.06 0.99 / 0.19 0.02 2.33 3.67
(±0.00) / (±0.04) (±0.00) / (±0.06) (±0.00) (±0.58) (±0.58)

CITRIS 0.98 / 0.04 0.99 / 0.18 0.02 2.67 4.00
(±0.01) / (±0.01) (±0.00) / (±0.02) (±0.00) (±1.53) (±1.00)

iVAE 0.55 / 0.04 0.58 / 0.14 0.55 2.33 4.33
(±0.08) / (±0.03) (±0.09) / (±0.06) (±0.06) (±0.58) (±1.15)

iVAE-AR 0.53 / 0.15 0.55 / 0.30 0.56 4.33 6.33
(±0.08) / (±0.09) (±0.09) / (±0.08) (±0.06) (±1.53) (±1.53)

paddle_left

paddle_right

ball bumpers score

(a) Original ground truth

paddle_left

paddle_right

ball bumpers score

(b) iCITRIS-ENCO

paddle_left

paddle_right

ball bumpers score

(c) iCITRIS-NOTEARS

paddle_left

paddle_right

ball bumpers score

(d) CITRIS
paddle_left

paddle_right

ball bumpers score

(e) iVAE

paddle_left

paddle_right

ball bumpers score

(f) iVAE-AR

Figure 18: Learned instantaneous graphs in the Causal Pinball dataset for all five models for a single
seed. Red arrows indicate false positive edges, and dashed red arrows false negatives. (a) The ground
truth of the dataset. (b) iCITRIS-ENCO recovered the graph for one seed perfectly, and for the
other two seeds, incorrectly oriented an edge between the ball and paddles. (c) iCITRIS-NOTEARS
commonly has some incorrect orientations between the paddles and the ball. (d) CITRIS, similar to
other experiments, tends to have a sparser instantaneous graph. (e) iVAE has a sparser graph, similar
to CITRIS, but with additional false positive edges. (f) iVAE-AR predicts a causal graph that has no
edge in common with the true graph.

Further, we visualize the predicted causal graphs of the different methods in Figure 18. In general,1719

we found that the most difficult relations are between the paddles and the ball, in particular their1720

orientation. This is due to the deterministic relations between the two factors, such that if the ball has1721

been hit by the paddle, we can already predict it just from the ball position. Further, in many states,1722

the ball and paddle do not affect each other, such that a state where the paddle would have hit the ball,1723

but the ball was intervened upon in the same time step, is extremely rare. Overall, all models suffered1724

from this problem, but iCITRIS showed to handle it.1725

51

Learned Causal Graphs



Summary

• CITRIS: Identify multidimensional causal variables from temporal sequences with soft interventions 
and known intervention targets

• Identifies minimal causal variables, i.e., part of the variables that depends on interventions
• CITRIS-NF scales to visually complex scenes with pretrained autoencoder

• iCITRIS: Extension to instantaneous effects within a time step

• Need for partially-perfect interventions
• End-to-end learning with joint causal discovery and causal representation learning

Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 18



Challenges in CRL
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ObservabilityLow-level actions

Open world

EvaluationGuarantees

Sample efficiency

Szot, Andrew, et al. "Habitat 2.0: Training home 
assistants to rearrange their habitat." NeurIPS
2021.
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