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Causal Representation Learning

* Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?

* Crucial for reasoning, planning, generalization, identifying cause-effect relations, etc.
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Causal Representation Learning
Challenges

High-dimensional input < low-dimensional causal system

Causal variables depend on each other

Multiple (non-)causal representations can describe the same system

Is a ‘causal’ representation unique?

gl—le
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Causal Representation Learning
Forms
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Temporal CRL

* Temporal sequences; all causal
variables evolve over time

e Common RL environments

* Temporality gives strong bias

Examples: [Lippe et al., 2022ab; Lachapelle et al.,
2022 ab; Yao et al., 2022ab; Khemakhem et al., 2020;
Hyvarinen et al.; 2019]
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Causal Identifiability from Temporal Intervened Sequences

t :
Causal variables @ @ o @ C H

Setup

Temporal causal Observations
relations

Lippe, Phillip, Sara Magliacane, Sindy Lowe, Yuki M.
Asano, Taco Cohen, and Efstratios Gavves. "CITRIS:
Causal Identifiability from Temporal Intervened
Sequences." In International Conference on Machine
Learning, pp. 13557-13603. PMLR, 2022.
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Causal Identifiability from Temporal Intervened Sequences
What is a Causal Variable?

Abstraction allows for: L < r

e Simpler graphs
* Fewer requirements to find it
e Scalability
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Causal Identifiability from Temporal Intervened Sequences
Minimal Causal Variables

* Abstraction = Multidimensional causal variables @
* |dentifying abstraction level = Interventions @ ball
* Augment causal graph with intervention targets

 [; =1 = Intervention on C; e

* [; = 0 = Passively observing C; (a) Original causal graph of C4

* Minimal causal variable sy (C;):

intervention-dependent part of a
multidimensional causal variable @ @ ball-z ball-vel-z
* Causal representation depends
e @) ball-y ball-vel-y

on the abilities of an agent/expert
(b) Minimal causal split graph of C1
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Causal Identifiability from Temporal Intervened Sequences
Theoretical Results

* Main theoretical result: we can identify the minimal causal variables up to invertible,
component-wise transformations if:

* No intervention target If ™! is a deterministic function of any other
* Following intervention design, [log, K| + 2 experiments are sufficient for this [Lippe et al., 2022c]

(a) Original causal graph of C; (b) Minimal causal split graph of C;
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CITRIS Architecture
CITRIS-NF
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CITRIS Experiments
Pong

* CITRIS identifies the causal variables accurately
* Interventions on paddles changed their policy

e Assumption of Independent Causal Mechanisms
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CITRIS Experiments

Temporal Causal3Dldent

Causal Factors

object-shape object-position
object-hue object-rotation
spotlight-hue spotlight-rot

background-hue

categorical

continuous

Zimmermann, Roland S., et al. "Contrastive learning angle /circular
inverts the data generating process." ICML, 2021.

Von Kiigelgen, Julius, et al. "Self-supervised learning

with data augmentations provably isolates content
from style." NeurlPS, 2021. Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 12



CITRIS Experiments

Temporal Causal3Dldent

Novel combinations of causal factors

Ground Truth Prediction

Learned Causal Graph

Image 1 Image 2 Ground Truth Prediction
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Instantaneous Effects in Temporal Sequences

« Common assumption: time resolves causal effects

e But what about observations at low frame rates?
time step t

= |Instantaneous Effects!

1=

o O

o
.

timestept+ 1

Lippe, Phillip, Sara Magliacane, Sindy Lowe, Yuki M.
Asano, Taco Cohen, and Efstratios Gavves. "iCITRIS:
Causal Representation Learning for Instantaneous

Temporal Effects.” First Workshop on Causal
Representation Learning (CRL), UAI 2022. Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 14



Instantaneous Effects in Temporal Sequences
Challenges

* Many more pitfalls, e.g.: ct >@
Temporal causal
~ relations
p1(CP2(C2) vs p1(C1)P2(Cr + C1|Cy) .
Instantaneous Observations
causal relations
* Solution: partially-perfect interventions ) "
that remove instantaneous parents ¢ @
* Chicken-and-egg situation:
. ) Latent
* Without graph, no causal variables confounding
e Without causal variables, no graph

= Minimal causal variables become
identifia bIe Interventions

(3,
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&
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ICITRIS: CRL for Instantaneous Temporal Effects

Architecture
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ICITRIS: CRL for Instantaneous Temporal Effects

Experiments

Learned Causal Graphs
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Summary

* CITRIS: Identify multidimensional causal variables from temporal sequences with soft interventions
and known intervention targets

* |dentifies minimal causal variables, i.e., part of the variables that depends on interventions

* CITRIS-NF scales to visually complex scenes with pretrained autoencoder

 iCITRIS: Extension to instantaneous effects within a time step
* Need for partially-perfect interventions

* End-to-end learning with joint causal discovery and causal representation learning



Challenges in CRL

Low-level actions

Guarantees

Szot, Andrew, et al. "Habitat 2.0: Training home
assistants to rearrange their habitat." NeurIlPS

2021.

Open world
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Observability

| Evaluation

Sample efficiency
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