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from videos 
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Triplets # R2 diag " R2 sep # Spearman diag " Spearman sep #
SlowVAE 0.34 0.61 0.17 0.66 0.23
iVAE⇤ 0.09 0.91 0.04 0.92 0.06

CITRIS-VAE 0.03 0.99 0.01 0.99 0.05
CITRIS-NF 0.02 1.00 0.04 1.00 0.10
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Triplet dist # Correlation metrics

Mean R2 diag " R2 sep # Spearman diag " Spearman sep #
SlowVAE 0.40 0.61 0.23 0.59 0.27
iVAE⇤ 0.27 0.80 0.29 0.77 0.28

CITRIS-VAE 0.21 0.89 0.10 0.88 0.12
CITRIS-NF 0.07 0.98 0.04 0.97 0.08

- 5 shapes 0.09 0.98 0.05 0.97 0.10
- 2 unseen shapes 0.23 0.94 0.15 0.93 0.19
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CITRIS: Causal Identifiability from Temporal Intervened Sequences

Table 12: Experimental results for the Temporal-Causal3DIdent Teapot dataset with a
limited intervention set, including standard deviations over 3 seeds. CITRIS performs very
similar as in the setting of independent interventions (Table 9), showing that it can handle
such intervention sets as well.

Triplet evaluation distances # Correlation metrics

pos x pos y pos z rot ↵ rot � rot s hue s hue b hue o Mean R
2 diag " R

2 sep # Spearman diag " Spearman sep #
Oracle 0.02 0.02 0.02 0.02 0.03 0.01 0.02 0.01 0.02 0.02 - - - -

SlowVAE 0.10 0.08 0.10 0.39 0.56 0.14 0.61 0.07 0.10 0.24 0.66 0.27 0.65 0.23
(stds) ±0.007 ±0.003 ±0.001 ±0.078 ±0.068 ±0.000 ±0.002 ±0.003 ±0.003 ±0.016 ±0.016 ±0.014 ±0.012 ±0.008

iVAE
⇤ 0.10 0.07 0.09 0.23 0.37 0.06 0.31 0.02 0.06 0.15 0.81 0.18 0.80 0.18

(stds) ±0.002 ±0.001 ±0.001 ±0.124 ±0.213 ±0.001 ±0.268 ±0.001 ±0.014 ±0.006 ±0.045 ±0.111 ±0.042 ±0.068

CITRIS-VAE 0.05 0.03 0.05 0.09 0.24 0.03 0.05 0.01 0.05 0.07 0.97 0.03 0.96 0.04

(stds) ±0.002 ±0.001 ±0.002 ±0.026 ±0.091 ±0.000 ±0.005 ±0.000 ±0.002 ±0.014 ±0.001 ±0.002 ±0.006 ±0.007

CITRIS-NF 0.05 0.03 0.04 0.04 0.07 0.03 0.04 0.02 0.04 0.04 0.98 0.05 0.98 0.08
(stds) ±0.002 ±0.000 ±0.001 ±0.001 ±0.003 ±0.001 ±0.001 ±0.000 ±0.001 ±0.001 ±0.002 ±0.015 ±0.002 ±0.023
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pos o rot orot s hue s hue b hue o obj s

pos o rot orot s hue s hue b hue o obj s

Figure 22: The learned graphs of CITRIS-NF from the Temporal-Causal3DIdent dataset.
False positive edges are colored red. Left: Temporal-Causal3DIdent Teapot. The learned
causal graph is identical to the ground truth graph. Since we have a single object shape, we
do not include obj s as a causal variable in the graph. Additionally, the parent set of hue o
is reduced due to the constant object shape. Right: Temporal-Causal3DIdent 7-shapes.
The edge obj s!rot o is predicted due to disentangling these two variables being the hardest
task of the dataset, and small correlations remain.

5. A joint intervention on the hue of the object and spotlight (hue o, hue s)

6. A joint intervention on the hue of the object and background (hue o, hue b)

Note that this set of interventions fulfills the intervention conditions of Theorem 3.3 for all
causal variables. At each time step, we perform one of these interventions, and use the same
temporal dependencies and dynamics as before.

The results over 3 seeds for these experiments are summarized in Table 12. All models
achieved very similar results as for the setting with independent intervention targets. This
verifies that CITRIS can also disentangle the di↵erent causal factors in a setting with limited
diversity in the observed intervention settings.

D.1.4 Learning the causal graph

The transition prior p� of CITRIS takes as input all latent variables from the previous time-
step, zt, in order to model a distribution over zt+1. Once the model has converged, we can
try to learn a sparser prior, which removes unnecessary edges between sets of latent variables
that have been assigned to di↵erent causal factors. More specifically, we are trying to find
the causal graph between z
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the directions of the edges are determined by t ! t+1, and no edges within a time step exist.
We find this graph by using ENCO (Lippe et al., 2022), a continuous-optimization causal
discovery method which supports the usage of arbitrary neural networks. The causal graph
is parameterized by a weight matrix � 2 RK+1⇥K+1, where �(�ij) represents the probability
of having the edge z

t
 i

! z
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 j
in the causal graph. To estimate the conditional likelihoods

under di↵erent causal graphs, we learn a new autoregressive prior p"(z
t+1

 i
|zT ·M, I

t+1

i ) where

M is mask on the latents at time-step t according to the causal graph: Mj = M̂ (j), M̂k ⇠
Bernoulli(�ki). In other words, we sample a causal graph, and then mask a set of latents
z
t
 j

if the causal variable Cj does not have an edge to Ci: zt j
6! z

t+1

 i
. With this prior, we

can then determine the gradients for � on a held-out test set following ENCO’s gradient
updates. We use a sparsity regularizer of � = 0.05 and train for 100 epochs.
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CITRIS: Causal Identifiability from Temporal Intervened Sequences

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Image 1 Image 2 Ground Truth Prediction

Row 1 Image 1 rot s, obj s
Image 2 pos o, rot o, hue o, hue s, hue b

Row 2 Image 1 rot o, rot s, hue o, hue s
Image 2 pos o, rot o, hue b

Row 3 Image 1 pos o, rot s, hue b, obj s
Image 2 rot o, hue o, hue s

Row 4 Image 1 rot s, hue o, obj s
Image 2 pos o, rot o, hue b, hue s

Figure 18. Visualizations of triplet generations. Each row represents one example of the triplet evaluation. The table on the right shows
which causal factors were combines from Image 1 and 2 respectively. The predictions were generated by CITRIS-NF trained on all 7
shapes. Despite the blurriness of some predictions, the model still clearly identifies the correct causal factors.

Table 11. Experimental results for the Temporal-Causal3DIdent 5 shapes dataset with additional testing on 2 unknown shapes (Cow and
Head), including standard deviations over 3 seeds. See Table 2 for a detailed discussion on the table and metrics.

Triplet evaluation distances # Correlation metrics
pos x pos y pos z rot ↵ rot � rot s hue s hue b hue o obj s Mean R

2 diag " R
2 sep # Spearman diag " Spearman sep #

Oracle 0.08 0.06 0.08 0.06 0.09 0.04 0.04 0.01 0.04 0.00 0.05 - - - -

CITRIS-NF
5 seen shapes 0.14 0.10 0.14 0.12 0.16 0.06 0.06 0.02 0.07 0.01 0.09 0.98 0.05 0.97 0.10
(stds) ±0.003 ±0.004 ±0.006 ±0.010 ±0.012 ±0.002 ±0.001 ±0.002 ±0.002 ±0.000 ±0.004 ±0.001 ±0.002 ±0.000 ±0.003

2 unseen shapes 0.32 0.26 0.35 0.36 0.52 0.12 0.10 0.03 0.11 0.10 0.23 0.94 0.15 0.93 0.19
(stds) ±0.026 ±0.027 ±0.021 ±0.037 ±0.048 ±0.007 ±0.009 ±0.005 ±0.008 ±0.033 ±0.018 ±0.003 ±0.012 ±0.005 ±0.012

- Cow shape 0.32 0.25 0.36 0.38 0.53 0.10 0.09 0.03 0.10 0.09 0.22 0.93 0.14 0.92 0.22
(stds) ±0.030 ±0.024 ±0.017 ±0.035 ±0.049 ±0.002 ±0.006 ±0.004 ±0.004 ±0.013 ±0.015 ±0.004 ±0.010 ±0.004 ±0.009

- Head shape 0.32 0.27 0.35 0.33 0.51 0.13 0.11 0.04 0.12 0.12 0.23 0.94 0.15 0.93 0.16
(stds) ±0.023 ±0.029 ±0.026 ±0.038 ±0.047 ±0.012 ±0.011 ±0.005 ±0.012 ±0.052 ±0.021 ±0.001 ±0.014 ±0.006 ±0.015

We show some examples of the triplet generation of CITRIS-NF on this dataset in Figure 18.

In correspondence to the generalization experiments on the Temporal-Causal3DIdent dataset (Table 2), we show a detailed
version of the results in Table 11. Overall, the generalization performance shows to be stable across the 2 unseen shapes,
Cow (Crane, 2021) and Head (Rusinkiewicz et al., 2021). The most difficult causal factors to generalize are the position
and rotation, since both of them are heavily dependent on the object shape and hence also entangled in the autoencoder’s
representation. Nonetheless, the performance well above random holds promise for future work on exploring these
generalization capabilities.

D.1.2. CORRELATION MATRICES

The results of Table 1 summarized the correlation matrices by reporting the mean on the diagonal and the maximum for
any other causal factor. In this section, we additionally show examples of full correlation matrices for all models on the
Temporal Causal3DIdent dataset. Figure 19 shows the results for the Temporal Causal3dIdent Teapot dataset. The x-axis
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which causal factors were combines from Image 1 and 2 respectively. The predictions were generated by CITRIS-NF trained on all 7
shapes. Despite the blurriness of some predictions, the model still clearly identifies the correct causal factors.

Table 11. Experimental results for the Temporal-Causal3DIdent 5 shapes dataset with additional testing on 2 unknown shapes (Cow and
Head), including standard deviations over 3 seeds. See Table 2 for a detailed discussion on the table and metrics.

Triplet evaluation distances # Correlation metrics
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CITRIS-NF
5 seen shapes 0.14 0.10 0.14 0.12 0.16 0.06 0.06 0.02 0.07 0.01 0.09 0.98 0.05 0.97 0.10
(stds) ±0.003 ±0.004 ±0.006 ±0.010 ±0.012 ±0.002 ±0.001 ±0.002 ±0.002 ±0.000 ±0.004 ±0.001 ±0.002 ±0.000 ±0.003

2 unseen shapes 0.32 0.26 0.35 0.36 0.52 0.12 0.10 0.03 0.11 0.10 0.23 0.94 0.15 0.93 0.19
(stds) ±0.026 ±0.027 ±0.021 ±0.037 ±0.048 ±0.007 ±0.009 ±0.005 ±0.008 ±0.033 ±0.018 ±0.003 ±0.012 ±0.005 ±0.012

- Cow shape 0.32 0.25 0.36 0.38 0.53 0.10 0.09 0.03 0.10 0.09 0.22 0.93 0.14 0.92 0.22
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We show some examples of the triplet generation of CITRIS-NF on this dataset in Figure 18.

In correspondence to the generalization experiments on the Temporal-Causal3DIdent dataset (Table 2), we show a detailed
version of the results in Table 11. Overall, the generalization performance shows to be stable across the 2 unseen shapes,
Cow (Crane, 2021) and Head (Rusinkiewicz et al., 2021). The most difficult causal factors to generalize are the position
and rotation, since both of them are heavily dependent on the object shape and hence also entangled in the autoencoder’s
representation. Nonetheless, the performance well above random holds promise for future work on exploring these
generalization capabilities.

D.1.2. CORRELATION MATRICES

The results of Table 1 summarized the correlation matrices by reporting the mean on the diagonal and the maximum for
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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
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We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
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IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:
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where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0

p�

�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct
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2, ..., C
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1
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In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0
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zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct
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2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It
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1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY
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where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1
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�
zt+1
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|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.

Encoder
Decoder
q✓
p✓
Transition prior
xt

xt+1

x̂t

x̂t+1

1

Encoder
Decoder
q✓
p✓
Transition prior
xt

xt+1

x̂t

x̂t+1

 
Latent to causal

variable assignment
Normalizing Flow

1

Encoder
Decoder
q✓
p✓
Transition prior
xt

xt+1

x̂t

x̂t+1

 
Latent to causal

variable assignment
Normalizing Flow

1

Encoder
Decoder
q✓
p✓
Transition prior
xt

xt+1

x̂t

x̂t+1

 
Latent to causal

variable assignment
Normalizing Flow

1

Encoder
Decoder
q✓
p✓
Transition prior
xt

xt+1

x̂t

x̂t+1

 
Latent to causal

variable assignment
Normalizing Flow

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Causal Identifiability from Temporal Sequences with Interventions

{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0

p�

�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
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2, ..., C
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K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It
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1 , ..., Ct�1
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In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.
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Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY
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|zt, It+1
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(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify
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Figure 2. An example causal graph in TRIS, with observed vari-
ables shown in gray and latent variables in white. A latent causal
factor Ct+1

i has as parents a subset of the causal factors at the pre-
vious time step Ct

1, . . . , C
t
K , and its intervention target It+1

i . All
causal variables Ct+1 and noise Et+1 cause the observation Xt+1.
Rt+1 is a latent confounder between the intervention targets.

Multidimensional Causal Factors: As opposed to most
work on causal representation learning, which considers
causal factors to be one-dimensional (Khemakhem et al.,
2020a; Klindt et al., 2021; Lachapelle et al., 2022), we
allow them to be potentially multidimensional, i.e., Ci 2
DMi

i with Mi � 1 and in practice we let Di be R for
continuous variables (e.g., spatial position), Z for discrete
variables (e.g., the score of a player) or mixed. This allows
modeling different levels of causal variables (e.g. a 2D-
position encoded in a single factor with two dimensions
instead of two different causal factors). We define the causal
factor space as C = DM1

1 ⇥ DM2
2 ⇥ ... ⇥ DMK

K .

Observation Function: We define the observation func-
tion h(Ct

1, C
t
2, ..., C

t
K , E

t
o) = X

t, where E
t
o represents any

noise independent of the causal factors that influence the
observations, and h : C ⇥ E ! X is a function from the
causal factor space C and the space of the noise variables
E to the observation space X . We assume that h is bijec-
tive, implying that the joint dimensionality of the noise and
causal model is limited to the image size. This allows us to
identify each causal factor uniquely from observations by
learning an approximation of f , while disregarding irrele-
vant features in the observation space.

Availability of Intervention Targets: Crucially, we assume
that in each time-step some causal factors might (or might
not) have been intervened upon and that we have access to
the corresponding intervention targets, but not the interven-
tion values. We denote these intervention targets by the bi-
nary vector I

t 2 {0, 1}K where I
t
i = 1 refers to an inter-

vention on the causal variable C
t
i .
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2

Figure 3. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes (blue
and orange) through an intervention, which does not influence the
relative position within a box.

3.2. A Necessary Condition for Disentanglement in TRIS

In TRIS, we generally cannot disentangle two causal factors
if they are always intervened upon jointly, or, on the contrary,
if they are never intervened upon.

Proposition 3.1. In TRIS, if two causal factors Ci and Cj

have only been jointly intervened on or not at all, then there
exists a causal graph in which Ci and Cj cannot be uniquely
identified from observations X and intervention targets I .

We provide an example of such a graph in Figure 3, where
a ball can move in two dimensions, x and y. If both x and
y follow a Gaussian distribution with stationary variances
over time, then any two orthogonal axes can describe the
distribution equally well (Belouchrani et al., 1997; Hyvari-
nen & Morioka, 2017), making it impossible to uniquely
identify them without interventions. Similarly, if we only
observe joint interventions on x, y together, we cannot iden-
tify them either due to the same reasoning. We include the
proof for this proposition in Appendix B.6.

Additionally, in TRIS where the latent causal factors may
correspond to multidimensional vectors, we cannot even
completely reconstruct said factors, when by the nature of
the system the provided interventions leave some of the
causal factor’s dimensions unaffected. In the next section,
we will instead introduce the concept of minimal causal
variables to characterize what we can identify instead.

3.3. Minimal Causal Variables

To visualize this scenario, consider again the example in
Figure 3 with a ball in one of two boxes. Over time, the
ball can move freely within the box it is currently in, but it
can only jump into another box if there is an intervention.
The intervention moves the ball to the other box, but keeps
the relative position of the ball within the box intact. While
one could define this process by a single causal variable x

over time, it can also be described by two causal variables:
the relative position within the box x

0 and the current box b.
Since only b is affected by the intervention, and we consider
causal factors to potentially be multidimensional, we could
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(b) Minimal causal split graph of Ci

Figure 9. Splitting the causal variable Ci in its minimal causal split. (a) In the original causal graph, Ct+1
i has Ct (or an eventual subset

of it) and It+1
i as its parents. (b) In the minimal causal split, only the variable part svari (Ct+1

i ) depends on the intervention. The invariable
part, sinvi (Ct+1

i ), is independent of It+1
i , hence giving us an additional conditional independence. Note that svari (Ct+1

i ) and sinvi (Ct+1
i )

are conditionally independent.
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Figure 10. Example for splitting a causal variable into an intervention-dependent and -independent part. The two ground truth causal
variables are the x and y positions of the ball. See Appendix B.4.1 for details.

The split s must be invertible, so that we can map back and forth between DMi
i and Dvar

i ⇥ Dvar
i without losing information.

Furthermore, to be called a split, s must satisfy s
inv
i (Ct

i ) ?? I
t
i | pa(Ct

i ), i.e., s
inv
i (Ct

i ) is independent of the intervention
variable I

t
i given the parents of C

t
i . Further, both parts of the split must be conditionally independent, i.e. s

inv
i (Ct

i ) ??
s
var
i (Ct

i ) | pa(Ct
i ), I

t
i . Hence, we can write their distributions as:

p
�
si(C

t+1
i )|Ct

, I
t+1
i

�
= p

�
s
var
i (Ct+1

i )|Ct
, I

t+1
i

�
· p

�
s
inv
i (Ct+1

i )|Ct
�

(17)

This means that s
var
i (Ct

i ) will contain the manipulable, or variable, part of C
t
i . In contrast, s

inv
i (Ct

i ) is the invariable part of
C

t
i which is independent of the intervention. This relation is visualized in Figure 9.

For any causal variable, there may exist multiple possible splits, but there is always at least the trivial split where Dvar
i = DMi

i
is the original domain of Ci, and Dinv

i = {0} is the one-element set (no invariant information). However, there might
also exist splits in which s

inv
i (Ct+1

i ) 6= ;. For instance, in a multidimensional causal variable Ĉ 2 R3, if an intervention
only affects the first two dimensions while the last one remains unaffected, we obtain the split s

var([Ĉ1, Ĉ2]), sinv(Ĉ3).
Nonetheless, this can even happen for scalar variables, since we do not constraint the possible distributions of Ci. We give
an example for such a case below.

Example 1 Consider the scenario in Figure 10 where we have a ball with its two positional dimensions x and y as its causal
factors. For now, we only focus on its x position (in the remainder of the section, x

t refers to the position of the ball on the
x-axis, not the full observation X

t which we denote by a capital letter). Over time, the ball moves within one of the two
boxes, but cannot jump in between boxes. An example of such a conditional could be:

p(xt+1|xt
, I

t+1
x = 0) =

(
min(max(xt + ✏, 0), 1) if x

t
< 1

min(max(xt + ✏, 1), 2) otherwise
(18)

with ✏ ⇠ N (0, 0.1). Intuitively, the ball therefore moves randomly around its previous position, while being bounded by the
box it is in. Due to its modular conditional distribution, we can rewrite the causal variable x and its distribution in terms of
two different variables: its position within its current box, u 2 [0, 1], and a binary variable indicating in which box the ball
is, b 2 0, 1 (left/blue vs right/orange in Figure 10). Then, its conditional distribution becomes:

p(xt+1|xt
, I

t
x) = p

�
b
t+1|xt

, I
t+1
x

�
· p

�
u

t+1|xt
, I

t+1
x

�
(19)


