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Categorical Normalizing Flows via Continuous Transformations

Introduction
• How can we model categorical data with Normalizing Flows?
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(Variational) Dequantization
(Theis et al., 2016; Ho et al., 2019)

- Categories ≠ quantized values

Discrete Normalizing Flows
(Tran et al., 2019)

- Difficult optimization
- Limited to permutations
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Ø Model categorical distributions by Normalizing Flow in continuous space

Paper and code

Categorical Normalizing Flows
• Desired properties of an encoding function:

No loss of information, learnable, smooth, support for higher dimension

Ø Variational Inference with factorized decoder:
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• All model complexity in flow, variational inference only used for encoding

• Best encoding function: simple mixture model with exact decoder 

• Stepwise modeling of graph to latent space: node types, edge types, virtual edges

• Permutation-invariant by deploying GNNs, mapping input to a fully-connected graph

• Efficient yet powerful generative model

Experiments – Molecule generation

Method Valid Unique Novel Parallel Manual
JT-VAE 100% 100% 100% ✘ ✓
GraphAF 68% 99.10% 100% ✘ ✘
R-VAE 34.9% 100% - ✓ ✘
GraphNVP 42.60% 94.80% 100% ✓ ✘

GraphCNF 83.41% 99.99% 100% ✓ ✘

+ Sub-graphs 96.35% 99.98% 99.98% ✓ ✘

Experiments – Graph Coloring
• Assign color to each node, neighbors need different colors

• Tested different node ordering for GraphRNN based on heuristics

• GraphCNF competitive and faster than best GraphRNN5. EXPERIMENTS

Encoding distribution Flow layer 4 Flow layer 6 Base distribution

(a) Forward sampling

Encoding distribution Flow layer 4 Flow layer 6 Base distribution

(b) Reverse sampling

Figure 14: Visualization of the latent space in a 8-layer flow trained on graph coloring with 3 categories
(shown in red, blue and green; best viewed in color and digital). The density of each category is colored
differently and normalized independently. Overlapping distributions are shown by averaging the RGB
colors weighted by their probability density. The left most figure shows the learned mixture encoding
distribution q(z|x), the center figures show the latent spaces after corresponding coupling flow layers
and right most shows the modeled base distribution (logistic). The latent space is scaled to fit into
the figure size for each visualization independently. Subfigure (a) shows the probability densities in
forward mode, i.e. pushing dataset examples through the flow, and (b) during generation, i.e. when
sampling from the base distribution and reversing the flows. A larger visualization of all flow layers
can be found in Appendix B.

The latent space that is created when inverting the flows (Figure 14b), i.e. during sampling, is almost
exactly the same as in the forward direction. Minor differences can be spotted in flow layer 6 for the
red density for instance, but those do not influence the samples in categorical space. Thus, we can
validate that the encoding distribution does not constitute any difficulties to the flow and that the flow
can accurately model the mixture input distribution.

To show the effect of more categories, we also visualize the latent space of a Categorical Normalizing
Flow trained on set modeling in Figure 15. We can see that some categories are combined at different
stages throughout the flow. As there are no clear relations among the categories, the decision of which
categories to combine when is arbitrary and changes across seeds. Similarly to the base distribution in
graph coloring, we experience a clear separation of categories in the logistics. Again, those colors are
not pure and any category can be created based on any of the sample in the logistic. Note that the
visually larger purple part is due to the combination of categories with similar colors (C10, C11, C12,
and C13) and not because of a larger probability density of a single category.

In conclusion, the visualization of the latent space shows that:

• The transformation flexibility provided by the continuous space is used to partly merge densities
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stages throughout the flow. As there are no clear relations among the categories, the decision of which
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• Molecules: nodes are atoms, edges are bonds

• SoTA for flows without manually encoded rules

• Most common failure case: generating two unconnected valid graphs. 

GraphCNF – Permutation-invariant graph NF 

Experiments – Language modeling
• Considerable better than joint decoder models (LatentNF, Ziegler et al., 

2019), especially for complex datasets

Categorical Normalizing Flows
Experiments – Language Modeling
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Given a graph 𝐺 = (𝑉, 𝐸):


