

UNIVERSITY OF AMSTERDAM Faculty of Science

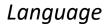
Categorical Normalizing Flows via Continuous Transformations

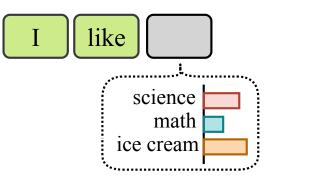
21 April 2021

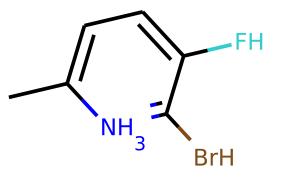
Phillip Lippe, Efstratios Gavves

Introduction Motivation

Categorical Data

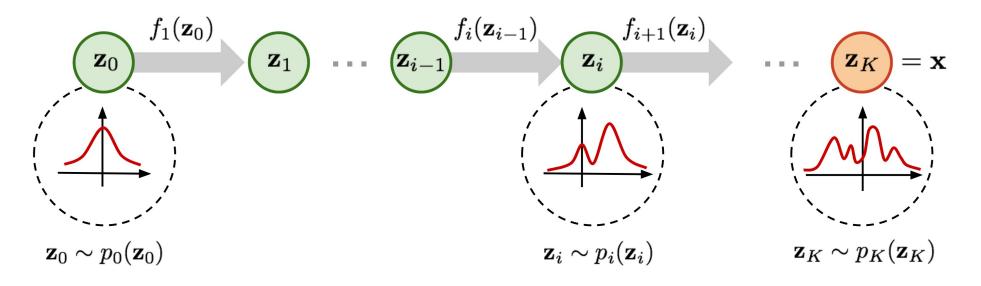






Introduction Preliminaries

Normalizing Flows



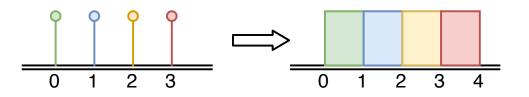
+ Universality
+ Exact likelihood estimate
+ Efficient density evaluation and (parallel) sampling

Figure credit: Weng, Lilian. "Flow-based Deep Generative Models", 2018.

21-Apr-21

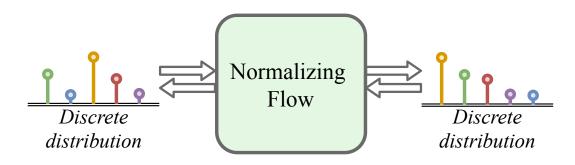
Introduction Related Work

Applying (Variational) Dequantization



Designed for image modeling – Categories are not "quantized" real values

Discrete Normalizing Flows



– Is limited to permutations

– Not universal with factorized prior

- (Biased) gradient approximations and difficult optimization

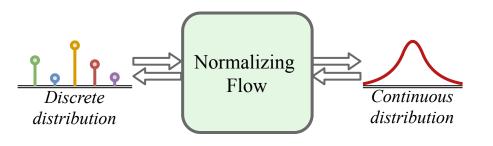
References

Tran, D. et al.: "Discrete Flows: Invertible Generative Models of Discrete Data". NeurIPS, 2019. Hoogeboom, E. et al.: "Integer Discrete Flows and Lossless Compression". NeurIPS, 2019.

Introduction Contributions

Categorical Normalizing Flow

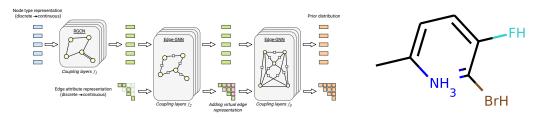
Modeling categorical distribution by a continuous normalizing flow



- + Universality
- + Stable optimization without biased gradients
- + Efficient density evaluation and (parallel) sampling

GraphCNF

Powerful graph generation model based on Categorical Normalizing Flows



- + One-shot generation
- + Permutation-invariant to node order
- + Support of categorical node and edge attributes

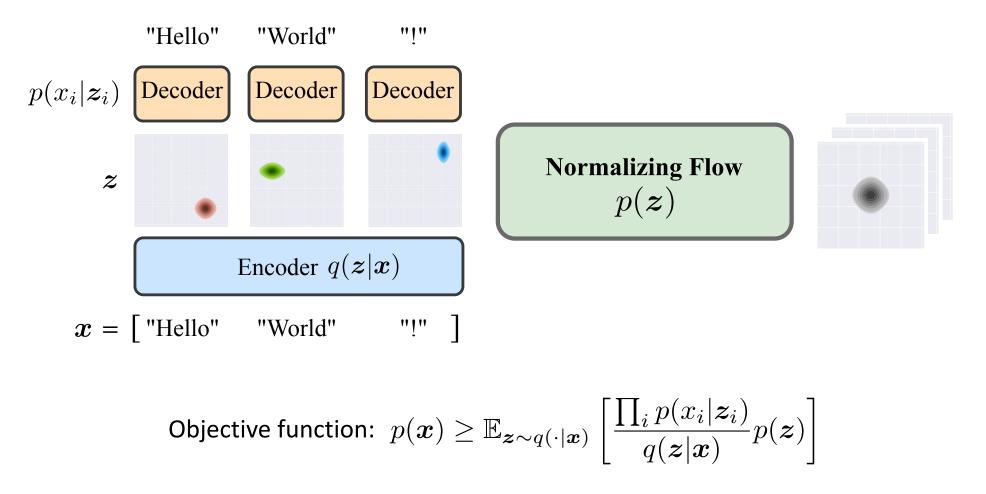
Categorical Normalizing Flows

- First step: represent categorical data in continuous space
- Desired properties of an encoding function
 - → No loss of information (non-overlapping volumes)
 - → Learnable
 - → Smooth
 - → Support for higher dimensions

 $\Rightarrow \text{Variational inference with factorized decoder:} \quad p(\boldsymbol{x}) \geq \mathbb{E}_{\boldsymbol{z} \sim q(\cdot | \boldsymbol{x})} \left[\frac{\prod_{i} p(x_i | \boldsymbol{z}_i)}{q(\boldsymbol{z} | \boldsymbol{x})} p(\boldsymbol{z}) \right]$

- Ensures that continuous form *z* contains the exact same information as discrete *x*
- \Rightarrow all model complexity inside the flow

Categorical Normalizing Flows



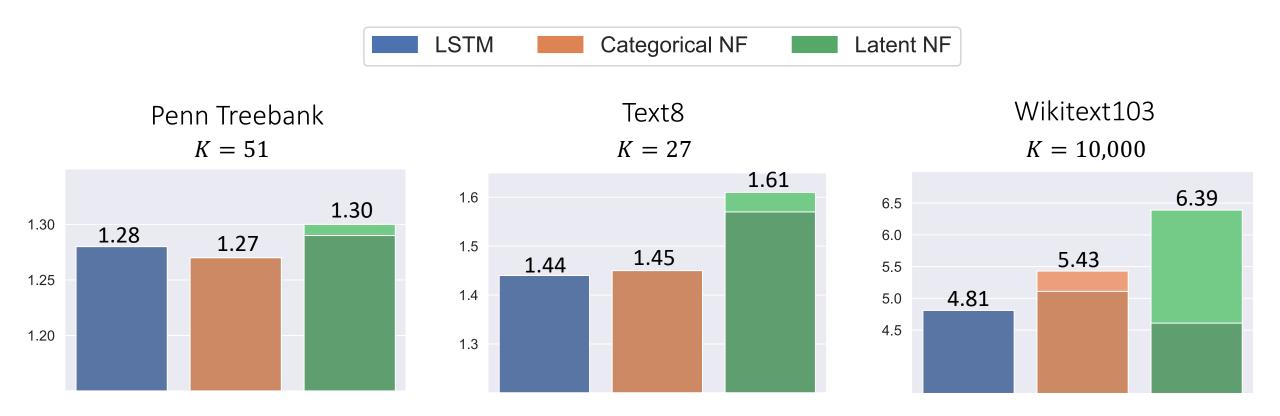
Categorical Normalizing Flows Experiments – Set Modeling

- Toy datasets on sets with known dataset likelihood
- **Metric**: test likelihood in bits per categorical variable (lower = better)

Model	Set shuffling	Set summation	
Discrete NF Variational Dequantization Latent NF	$\begin{array}{c} 3.87 \ \pm 0.04 \\ 3.01 \ \pm 0.02 \\ \textbf{2.78} \ \pm 0.00 \end{array}$	$\begin{array}{c} 2.51 \ \pm 0.00 \\ 2.29 \ \pm 0.01 \\ 2.26 \ \pm 0.01 \end{array}$	
CNF + Mixture model CNF + Linear flows CNF + Variational Encoding			
Optimal	2.77	2.24	

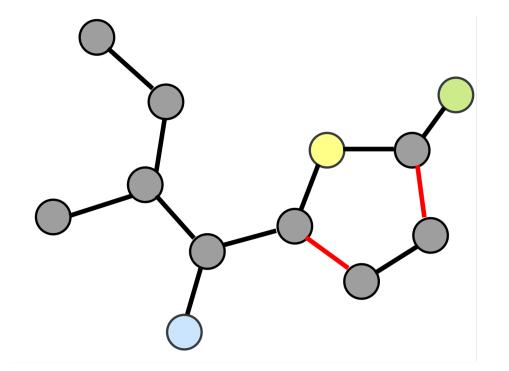
Categorical Normalizing Flows

Experiments – Language Modeling



Metric: bits per character/word

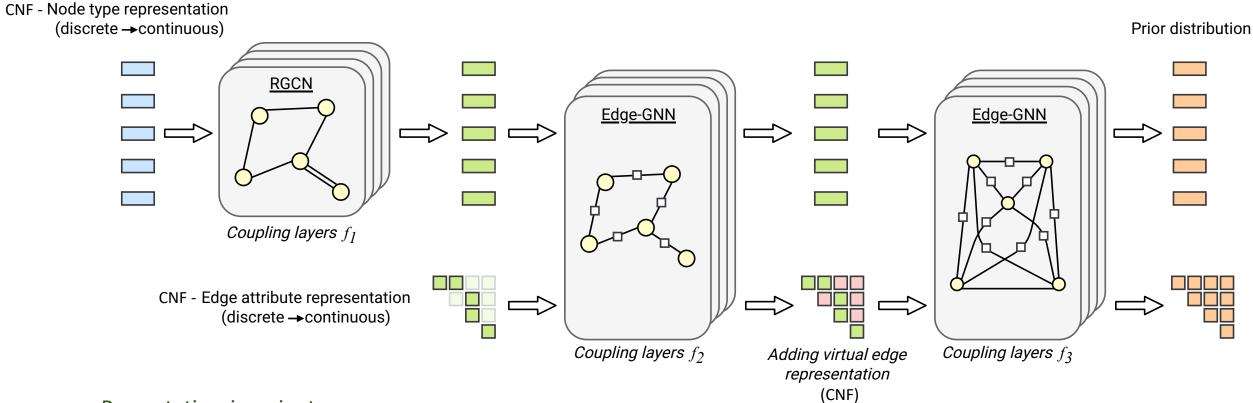
Graph Generation with CNF Introduction



(1) Node attributes
(2) Edge attributes
(3) Adjacency matrix

Challenge: nodes are unordered, i.e. a set ⇒ Maintain permutation-invariance of nodes

Graph Generation with CNF GraphCNF



- + Permutation-invariant
- + Efficient three-step approach

Graph Generation with CNF Experiments – Molecule Generation

- **Task**: given a set of molecules, learn to model the space of valid molecules
- Metrics: calculated on 10k generated graphs,

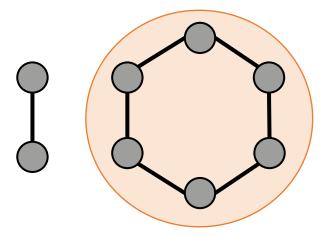
(1) Validity: percentage of graphs being valid molecules

(2) Uniqueness: percentage of unique molecules

(3) Novelty: percentage of molecules that are not equal to any training molecule

(4) *Reconstruction*: reconstruction accuracy of test molecules from latent space

Graph Generation with CNF Experiments – Molecule Generation



Results on the Zinc250k dataset

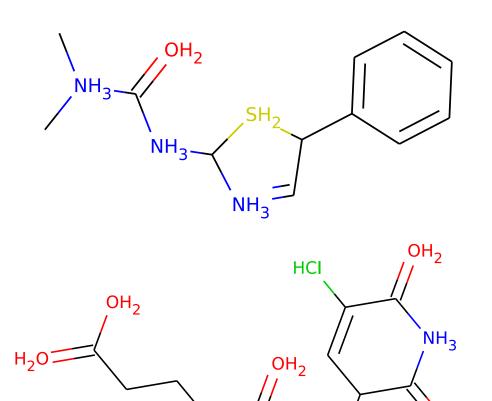
(224k examples)

Method	Validity	Uniqueness	Novelty	Reconstruction	Parallel	General
JT-VAE	100%	100%	100%	71%	X	X
GraphAF	68%	99.10%	100%	100%	×	\checkmark
R-VAE	34.9%	100%		54.7%	\checkmark	\checkmark
GraphNVP	42.60%	94.80%	100%	100%	\checkmark	\checkmark
GraphCNF	83.41%	99.99%	100%	100%	\checkmark	1
	(± 2.88)	(± 0.01)	(± 0.00)	(± 0.00)		
Cub manha						

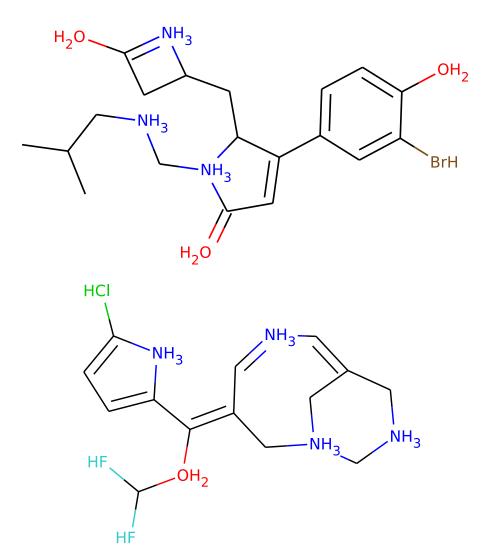
+ Sub-graphs

Graph Generation with CNF

Experiments – Molecule Generation



NH₃



Categorical Normalizing Flows via Continuous Transformations

OH₂

Conclusion

- Mixture model encoding can be used as "dequantization" for categorical data
 - Simple, efficient, and learnable
- CNFs enable strong, latent-based generative models on domains like graphs
 - GraphCNF significantly outperforms previous flow-based approach on molecule generation
- Possible future direction:
 - Combining continuous and discrete normalizing flows
 - GraphCNF on large graphs (|V| > 100)

Thank you. Questions?