QU\A ¥ UNIVERSITY OF AMSTERDAM

<% Faculty of Science

Categorical Normalizing Flows
via Continuous Transformations

21 April 2021
Phillip Lippe, Efstratios Gavves



Introduction
Motivation

Categorical Data

Language Graphs
L1 JQike 77N\
SClence: ; )
. mathpg NH
i 1cecream| 3 BrH

Q
g3
.................................

21-Apr-21 Categorical Normalizing Flows via Continuous Transformations Slide 2 of 16



Introduction

Preliminaries

Normalizing Flows
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+ Universality
+ Exact likelihood estimate

. . - + Efficient density evaluation and (parallel) sampling
Figure credit: Weng, Lilian. “Flow-based

Deep Generative Models”, 2018.
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https://lilianweng.github.io/lil-log/2018/10/13/flow-based-deep-generative-models.html

Introduction
Related Work

Applying (Variational) Dequantization
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Discrete Normalizing Flows
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Designed for image modeling

— Categories are not “quantized” real values

References

Tran, D. et al.: “Discrete Flows: Invertible Generative Models of Discrete Data”. NeurlIPS, 2019.
Hoogeboom, E. et al.: “Integer Discrete Flows and Lossless Compression”. NeurlIPS, 2019.
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— Is limited to permutations
— Not universal with factorized prior

— (Biased) gradient approximations and difficult optimization
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Introduction
Contributions

Categorical Normalizing Flow
Modeling categorical distribution by a continuous normalizing flow

é )
o + Universality
ol ¥o <}:: Norrl?lfzmg -<,':1: A + Stable optimization without biased gradients
Discrete Continuous + Efficient density evaluation and (parallel) sampling
distribution \_ ) distribution

GraphCNF

Powerful graph generation model based on Categorical Normalizing Flows

/ A + One-shot generation
+ Permutation-invariant to node order
NH, + Support of categorical node and edge attributes

BrH
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Categorical Normalizing Flows
Encoding

* First step: represent categorical data in continuous space

* Desired properties of an encoding function
=> No loss of information (non-overlapping volumes)
=> Learnable

= Smooth
=> Support for higher dimensions

Hz' p($i|zi)

p(z)
q(z|z)

* Ensures that continuous form z contains the exact same information as discrete x

* = all model complexity inside the flow

= Variational inference with factorized decoder: p(x) > E.q(.|a) [



Categorical Normalizing Flows

Overview
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Objective function: p(x) > E,q(.|a) [

p(Z)]
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Categorical Normalizing Flows
Experiments — Set Modeling

* Toy datasets on sets with known dataset likelihood

* Metric: test likelihood in bits per categorical variable (lower = better)

Model Set shuffling Set summation
Discrete NF 3.87 +0.04 2.51 £0.00
Variational Dequantization 3.01 £0.02 2.29 +0.01
Latent NF 2.78 +0.00 2.26 £0.01

CNF 4+ Mixture model
CNF 4+ Linear flows
CNF + Variational Encoding

Optimal 2.77 2.24




Categorical Normalizing Flows
Experiments — Language Modeling

BN LSTM I Categorical NF BN Latent NF

Penn Treebank Text8 Wikitext103
K =51 K =27 K =10,000
1.61
1.30 1.30 16 6.5 6.39
e 1.27 15 50
1.44 1.45 55 5.43
1.25
14 5.0 4.81

1.20 13 4.5 -

Metric: bits per character/word
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Graph Generation with CNF

Introduction

(1) Node attributes QQQO

(2) Edge attributes I I

(3) Adjacency matrix

Challenge: nodes are unordered, i.e. a set
= Maintain permutation-invariance of nodes



Graph Generation with CNF

GraphCNF
CNF - Node type representation
(discrete =continuous) Prior distribution
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+ Permutation-invariant
+ Efficient three-step approach
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Graph Generation with CNF

Experiments — Molecule Generation

* Task: given a set of molecules, learn to model the space of valid molecules

* Metrics: calculated on 10k generated graphs,

(1) Validity: percentage of graphs being valid molecules
(2) Uniqueness: percentage of unique molecules
(3) Novelty: percentage of molecules that are not equal to any training molecule

(4) Reconstruction: reconstruction accuracy of test molecules from latent space



Graph Generation with CNF

Experiments — Molecule Generation

Results on the Zinc250k dataset

(224k examples)
Method Validity Uniqueness Novelty Reconstruction Parallel General
JT-VAE 100% 100% 100% 1% X X
GraphAF 68% 99.10% 100% 100% X v
R-VAE 34.9% 100% — 54.7% v v
GraphNVP 42.60% 94.80% 100% 100% v v
GraphCNF 83.41% 99.99% 100% 100% v v
(+£2.88) (+0.01) (0.00) (+£0.00)

+ Sub-graphs




Graph Generation with CNF

Experiments — Molecule Generation
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Conclusion

* Mixture model encoding can be used as “dequantization” for categorical data

* Simple, efficient, and learnable

* CNFs enable strong, latent-based generative models on domains like graphs

* GraphCNF significantly outperforms previous flow-based approach on molecule generation

e Possible future direction:
e Combining continuous and discrete normalizing flows

* GraphCNF on large graphs (|V| > 100)



Thank you. Questions?
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