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Abstract

An automated theorem prover is a computer program that shows that a state-

ment, called the conjecture, can be logically implied by a set of axioms. These

systems are applied for deducting mathematical proofs, but also for the verification

of software and hardware given a proper formulation of the problem as axioms and

conjecture. Most modern theorem provers like Vampire and E rely on first order

logic where implications of clauses are computed in order to generate the empty

clause. When to use which clauses for interference is a key aspect of automated

theorem proving and crucial for the system’s performance.

For this task of clause selection, a new heuristic based on artificial neural net-

works is presented in this project, as deep learning techniques have currently

demonstrated great success in several domains. First, the clauses are embedded

by a vocabulary that is learned during training and shares features among similar

symbols. The following compression to a fixed size is implemented by combining

the concepts of dilated convolutions and a dense block to ensure a wide context

understanding. Next, the features of a clause that should be evaluated are concate-

nated with those from the negated conjecture, and processed by a small classifier

network. Moreover, a knowledge base extraction for initial clauses is developed

and used as an additional input to the classifier. The training is optimized by

extensive negative mining and a novel loss function. The heuristic is integrated

and tested in the state of the art theorem prover E. In experiments, the network

correctly classifies over 90% of all clauses in a test dataset of solved proofs if they

are either likely to be useful for the proof or not. As this project is one of the

first in this area, only one from a sample of 25 new proofs can be solved with the

developed technique leaving open challenges for future approaches.
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1. Introduction

1. Introduction
1.1. Motivation
To proof a hypothesis in mathematics, a sequence of logical statements has to be found
that explains why the given statement is true. The proof relies on a set of self-evident
statements, known as axioms, along with accepted rules of inference. To solve the
task of finding a proof, a certain ability of formal reasoning is needed. Humans have
demonstrated their skills several times, as at least every mathematical proof before the
20th century was done by hand. Today, computers are superior to humans on many
automatable tasks. So, this raises the questions if machines could also deduct proofs,
especially the ones that no one could solve yet?

Computer programs dealing with this task are known as automated theorem provers.
In comparison to humans, such systems can compute implications much faster and there-
fore test more possible proof paths. One of the most popular successes was settling of
the Robbins problem by the automated theorem proving system EQP in October 1996
[41]. The problem was based on the conjecture that a particular group of axioms form
a basis for Boolean algebra proposed in 1933, but neither the author, Herbert Robbins,
nor anyone else could prove this statement until the solution by EQP. The proof search
by EQP took about 8 days on an RS/6000 processor [31].

But not only for mathematics is automated theorem proving relevant. A key modern
application of theorem provers is in the verification of hardware and software designs
[29]. Digital computers represent abstract discrete state machines, and can naturally be
formalized in mathematical logic. Thus, an automated theorem prover is able to find
bugs and proof the correctness of complex software and hardware architectures given
the formal descriptions of such systems. Many well known software bugs resulted in
costly consequences including various space and military aircraft crashes underlining
the viability of verification systems. Further applications of automated theorem prover
involve i.e. geometric proofs and artificial intelligence [46].

The language in which modern automated theorem provers operate often is first order
logic, like Vampire [55, 32] and E [60, 61]. The advantage of first order logic is the good
compromise between expressiveness (how easily can computable problems be encoded
in this language) and automation of the proof search. To transform a problem into first
order logic, the axioms are converted into a set of clauses that also includes the negation
of the given conjecture or hypothesis. The proof idea is to apply inference rules until
either the emtpy clause is derived witnessing the correctness of the conjecture, or no
new clause can be generated. When to compute which implications is a key aspect of
automated theorem proving and mostly organized by a variation of the given clause
algorithm. Its concept is to split the clauses into a processed set, in which all possible
implications are computed, and an unprocessed set from which one clause is processed at
each iteration. The choice of the chronological order, in which the clauses are processed,
is crucial for the provers’ performance.

This task is also known as the clause or premise selection problem defined by:
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1. Introduction

“(Premise selection problem). Given a large set of premises P, an ATP system
A with given resource limits, and a new conjecture C, predict those premises from
P that will most likely lead to an automatically constructed proof of C by A” [4].

Classic approaches like selecting the oldest clause first (FIFO: First-In/First-Out) or
preferring small clauses (Clauseweight) are more likely to find proofs due to the greatly
amount of clauses they can process. - SATZ VON INTRO AUS LIPPE/SCHULZ PA-
PER - However, the function and predicate symbols are uninterpreted and dependencies
between di�erent clauses are rarely considered as it constitutes a very complex problem.
Hence, the best heuristic depends on the problem but is not obvious even to human
experts [7].

In the last years, algorithms in the area of machine learning have successfully proved
their capabilities to model such relationships which are too complex for analysis [17]. Es-
pecially deep learning revolutionized the concepts of domains like Computer Vision [33,
54], Natural Language Processing [16, 58] and Planning [65, 75]. Most approaches in
combining machine learning with automated theorem proving concentrated on modifying
an heuristic regarding previous proofs or shallow feature selection [7, 11, 12]. However,
deep learning has reached a state where even an evaluation of clauses with end-to-end
learning is reasonably practicable as experiments by [4, 39] have shown. Therefore, this
project investigates a deeper assessment on how to optimize neural networks for the
clause selection problem.

1.2. Proposed Approach
For this project, the basic concept of the deep learning heuristic is based on [39]. The
inputs for the evaluation are the clause that should be evaluated, and the negated
conjecture of the proof. As neural networks mostly run on fixed size data, both need
to be embedded into a feature vector. The network that is responsible for this step is
called the embedding network and is one of the major parts of the architecture. After
the clause and the negated conjecture are embedded into a fixed size feature vector, both
are concatenated and processed by a second model, the combiner network. The result
is a single number between 0 and 1 constituting whether the clause is likely to be useful
(0) or not (1) for the proof attempt.

This concept has many choice points and open challenges that need to be addressed.
Therefore, this project concentrates on four main aspects of the architecture and proposes
new approaches for a better clause heuristic:

Vocabulary The first step of evaluating a clause is representing its symbols as features
so that it can be processed by a neural network. For this, techniques from the
domain of Natural Language Processing are used where the symbol embeddings
are learned in a vocabulary within the standard training process [16]. However,
symbols can share some characteristics (like if it is a constant, a variable or a
parentheses) so that also their features should be similar. Therefore, this project
proposes an approach where the feature embedding of each symbol is split into
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1. Introduction

a part for its name and another for its arity, or rather its type, which is shared
among similar words.

Embedding network Embedding a clause might be the hardest problem in this archi-
tecture as a sequence of symbols with arbitrary length has to be compressed into
a small, fixed size feature vector that must contain all information necessary for
the evaluation. Di�erent approaches like shallow convolutional and recurrent net-
works, but also deeper architectures like recursive Tree-LSTMs and WaveNet were
already tested in related works [4, 39]. Models based on convolutions demonstrated
the best results but su�ered by a lack of context information of the clause. To
address this problem, a new network architecture is proposed that reasonably in-
creases the local view of each neuron and actively supports the combination of
di�erent filter sizes.

Combiner network The combiner network is the last step of the heuristic and results in
a final evaluation of the clause. The inputs for this model are the feature vectors
of the negated conjecture and the clause that should be evaluated. However, these
inputs are not su�cient for an optimal clause selection. Therefore, a third input
is developed in this projects that constitutes a knowledge base extracted from
the initial clauses of a proof. Based on this, the network can learn dependencies
between clauses and compare the clause to be evaluated with possible others.

Performance measurement The last part deals with the question how to give the net-
work a feedback on its predictions. Optimally, the heuristic would be applied in
E and trained on its own proof searches. However, as neural networks need many
iterations for training and proof attempts can take several minutes, this approach
is not practicable. The alternative that is used in this project and also in [39], is
training a network in a supervised manner on proofs that are deducted by clas-
sic heuristics. This guarantees a faster learning process and su�cient amount of
examples.
Nevertheless, the challenge coming with this task is the significantly imbalanced
data. The amount of examples for clauses that are not useful for a proof are
up to 100 times higher than the one for useful clauses. Thus, a new technique
is developed in this project combining extensive mining of hard examples with
an adapted loss function that increases the loss for misclassifications of positive
examples.

1.3. Outline
This report is structured as follows. The first section gives a brief introduction to
the field of automated theorem proving and machine learning. A detailed discussion
of the proposed approach is presented in section 3 and the corresponding experiments
are described in section 4. The report concludes with an outlook on remaining open
challenges and an overall summary.
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2. Foundations

2. Foundations
This section gives a brief introduction to the field of machine learning and theorem
proving. The basics of first-order theorem proving are explained in the first subsection,
followed by an introduction to E [60]. Next, a review of machine learning techniques
is given, while the following subsection discusses artificial neural networks as a part of
learning algorithms. As the last part of this section related works are presented and
summarized.

2.1. First-Order Theorem Proving
The goal of an automated theorem prover (ATP) is to solve the question if a hypothesis
H can be implied by a set axioms A = {A1, A2, ..., An}: A |= H [59]. Mostly, the
problem that should be solved has an application in other domains like mathematics. To
process those with automated theorem provers, the basic rules of the domain need to be
formalized into a set of axioms as well as the problem as a conjecture or hypothesis. First
order logic has established as a standard for this formalization as automated theorem
provers can deducts proofs with methods like resolution and superposition, and its syntax
quite similar to word formulations of rules [49, 59]. If the ATP has found a proof, it
can be used to solve the given problem in the real domain like proving a mathematical
hypothesis. This concept is visualized in figure 1.

Automated
Reasoning

Problems

Conjecture

World

Axioms

Proof

Solution

Figure 1: The concept of automated reasoning is to formalize a problem as a conjecture.
Inspired by [72]

Today, automated theorem provers like Vampire [55, 32], Prover9 [43], SPASS [80] and
E [60, 61] define the state of the art and are based on superposition and saturation sub-
suming other calculi like resolution, paramodulation and unfailing completion [62]. To
introduce automated theorem provers, the first paragraph gives an short overview of first
order logic with equality. The next section describes the general concept of saturation-
based theorem provers, before E [60, 61] is presented in more detail in section 2.3.3.
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2. Foundations

2.1.1. First Order Logic with Equality

First order logic extends propositional logic to predicate logic where a predicate is a
function of terms. Despite a proposition which is either true or false for the whole
domain, the truth value of a predicate depends on its parameters. These parameters,
or also called terms, can be constants, functions or variables. General statements that
apply for all terms can be expressed by quantified variables like ÷X (for at least one
element) and ’X (for all elements) [32].

Overall, a signature for predicate logic is a triple of (P, F, V ) where P defines the
predicate symbols, F the functions with arbitrary arity, and V the variables. Functions
and predicate symbols are uninterpreted so that they do not have any semantic value.
However, first order logic can include equality which is interpreted as a congruence
relation [49].

To clarify the syntax used in this report, the following definitions are stated:

Formulae A formulae specifies a logical statement and is defined recursively:
• Literals, also called elementary statements, are formulae
• Boolean combinations (‚, ·, æ, ¡)
• If F is a formula, ’X : F and ÷X : F are formulae of formulae are formulae

An example for a formula is ’X : (’Y : ((odd(X) · odd(Y )) æ X ”ƒ add(Y, 1))).
The individual parts of the formula are explained in the next definitions.

Atom and Literal An atom is the smallest statement that has either the logical value
true or false. In first order logic, a predicate with specified parameters is an atom.
A literal constitutes a positive or negative atom. In the example, odd(X) and
odd(Y ) are both positive atoms while X ”ƒ add(Y, 1) is a negative atom due to the
negated equality. However, all three atoms are also literals.

Terms A term is a variable or a function with specified parameters. The parameters are
recursively defined as terms and can be functions as well. Functions have di�erent
arities where a function with no parameters is called a constant. In the example
above, X, Y , 1, add(Y, 1) are terms where X and Y variables and 1 is a constant
term, and add(Y, 1) is a composite term with proper subterms 1 and Y .

Clauses A clause is a multiset that is written and interpreted as disjunctions of literals.
All variables in a clause are implicitly universally quantified (’X). The previous
example of the formulae can be rewritten as a clause: X ”ƒ add(Y, 1) ‚ odd(X) ‚
odd(Y ).

Equality Many conjectures based on practical applications involve equality. As equality
has a high semantic value, it can be included as part of the logic itself and inter-
preted as a congruence relation. The properties of equality can be expressed by
the congruence axioms for reflexivity, symmetry and transitivity [49]:
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2. Foundations

æ x ƒ x (reflexivity)
x ƒ y æ y ƒ x (symmetry)

x ƒ y · y ƒ z æ x ƒ z (transitivity)
(2.1)

The extended resolution of first-order logic with equality is called superposition
and contains inference rules based on the congruence axioms.

2.1.2. Saturation-Based Theorem Proving

The first step for a first-order theorem prover is clausification. Therefore, the axioms A

and hypothesis H as first-order predicate logic formulae are transformed into a clause
set {C1, C2, ..., Cn} in clause normal form (CNF) such that the set is unsatisfiable if
and only if A |= H holds [50, 59]. The success of the ATP can greatly depend on the
quality of clausification. This is why there are various techniques like Formula renaming,
Skolemization and Simplification to improve this transformation [50].

Proving, that the resulting clause set is satisfiable or not, can be done by saturation.
Saturation means to compute the closure of a given set of formulas or clauses under a
given set of inference rules [14]. Therefore, new clauses are derived by applying inference
rules on one or more existing clauses. Afterwards, the new clause is added to the original
clause set and can be used as a premise again for deriving new clauses. If no new non-
redundant clause can be derived by the clause set, it is saturated up to redundancy
and the process stops. Saturation comes also to an end, if the empty clause is derived.
This would prove that the clause set is unsatisfiable and witnesses the implication of the
hypothesis H by the original axioms A [62].

During the process, current calculi simplify clauses by for example replacing terms by
smaller ones (called rewriting) or removing clauses that are implied by a more general
clause (called subsumption). This reduces the size of the clause set without loosing non-
redundant information and could speed up the proof search. However, saturation can
derive an infinite number of consequences in most cases. To guarantee that if the clause
set is unsatisfiable the empty clause is derived in a finite runtime, no non-redundant
inference should be delayed infinitely. This principle is called fairness [62].

One of the key aspects in ATP is to design an algorithm that determines when to
compute which inference, as there is a great number of possible derivations. One of
the simplest selection rules is level selection which derives all possible clauses from the
original clause set before adding them into the set. This ensures the fairness of the
algorithm, but does not support any heuristic guidance. The counterpart to this process
is a single step algorithm. For this, only one inference is performed at a time and the
derived clauses are instantaneously added to the clause set. Although heuristics can be
used to select the next step, they have to be applied on inferences instead of concrete
clauses. In addition, every computed inference must be recorded to prevent repetitions,
but requires a great amount of memory for larger proof searches.

Today, most provers like Vampire [55, 32], Prover9 [43], SPASS [80] and E [60, 61]
rely on variants of the given clause algorithm. For this, the clause set is divided into

6



2. Foundations

the subsets U for the unprocessed and P for the processed clauses. Initially, P is empty
and U contains all clauses. In each iteration, one clause g from U is selected by a
heuristic and added to the subset P. Next, all inferences using g and other premises
from P are computed and included in U. With these steps it can be verified that all
inferences between clauses in P have been performed and if P is unsatisfiable the empty
clause must have been derived. The algorithm terminates as well if U is empty what
would witness the satisfiability of the clause set.

The two most popular variants of the given clause algorithm are the Otter loop and
DISCOUNT loop [10, 42]. The main di�erence between those algorithms is that Otter
loop uses all clauses for simplification while only processed clauses are used in the DIS-
COUNT loop. This leads to a faster iteration runtime for the DISCOUNT loop, but
the Otter loop typically needs less iterations to find a proof. So, both variants have
advantages and disadvantages, and none was found to be systematically superior of the
other. Still, the heuristic for selecting the given clause g for each iteration has a great
e�ect and is one of the main criteria for the provers’ performance [62].

The concrete implementation of the DISCOUNT loop in E is illustrated in figure 2
and further discussed in the next section 2.2.1.

2.2. E Prover
In this project, the state of the art theorem prover E [60, 61] is used as a foundation. It is
a saturation-based prover based on first order logic with equality. The four key aspects
of E are its calculus (variant of superposition), the search organization (DISCOUNT
loop), the heuristic control (clause and literal selection, term ordering) and its inference
engine (e�cient rewriting). While developing a new heuristic, the most interesting parts
are search organization and the heuristic control. Therefore, these aspects are presented
in the following sections based on [60, 61].

2.2.1. Search Organization

In E, the proof search is based on the DISCOUNT loop. As introduced in section 2.1.2
the DISCOUNT loop is a variation of the given clause algorithm and splits all clauses
into the subset processed P and unprocessed U. At the beginning of the proof search, P
is empty and all initial clauses are in U. Afterwards the algorithm moves one clause from
U to P one at a time and stops if either P contains the empty clause (set is unsatisfiable)
or U is empty (set is satisfiable). E has implemented five steps to add a clause from U
to P which are illustrated in figure 2:

1. The first step for each iteration is to select the given clause g. This is done
by evaluating every clause with heuristics and choosing the best one. As clause
selection is one of the major aspects of automated theorem proving, section 2.2.2
presents some heuristics and their implementation structure in E.

2. After a clause g is selected, it is simplified. Therefore, all inference rules are
applied based on g and potential other premises from P that modify g. If g is the

7



2. Foundations

empty clause, the algorithm stops and returns the unsatisfiability of the clause set.
Otherwise, the simplified version of g will be used for all further steps.

3. The next step handles the counterpart simplification. If a clause c in P could
be simplified by using g, it is moved back to U after reduction. Moreover, if c is
fully subsumed by g or redundant it can be removed without loosing completeness.
Otherwise the clause stays unmodified in P.

4. With the simplified g inference rules are implied to derive new clauses between
g and P. Superposition, equality factoring and resolution is performed for the
generation step.

5. Finally, the generated and prior clauses have to be simplified with regards to P.
However, as this can be an expensive task, only those inference rules are performed
that E e�ciently implements. Despite the simplification of step 2 and 3, the
clauses do not need to be fully simplified to guarantee completeness as they can
be processed again including step 2 later.

Figure 2: Illustration of the DISCOUNT loop as implemented in E. An iteration can be
separated into five steps performing selection, simplifications or derivations.
The figure is adapted from [59].

2.2.2. Heuristic Control

Search heuristics have a great impact on the provers’ performance, especially when
using the DISCOUNT loop instead of the Otter loop. E provides a generic framework
for integrating and implementing di�erent heuristics for clause selection, literal selection
and selection of term ordering. In this project, a new heuristic for clause selection is
developed by using Deep Learning. Therefore, this section gives an overview of current
clause selection heuristics [60, 61].

8



2. Foundations

For each unprocessed clause, all heuristics compute an evaluation only once after it
was generated. Priority Queue

FIFOweight A fair and simple heuristic is First-In/First-Out (FIFO). Older clauses are
selected first ensuring completeness and fairness of the proof search. The evaluation
is based on a counter that is increased for each generated clause.

Clauseweight This heuristic evaluates a clause by the number of symbols. It is param-
eterized by a weight for function (including constants) and predicate symbols, a
weight for variables and a factor for positive literals. The clauseweight heuristic
prefers small clauses that typically generate fewer descendants and likely present
general concepts [60].

Refinedweight Refinedweight works similar to clauseweight but modifies the symbol
counting by increasing the weight for maximal terms and literals.

In E, the most successful clause heuristics are combinations of i.e. symbol weight or
FIFO, also called hybrid heuristics. The evaluation by which the given clause is selected
alternates in a round-robin fashion.

2.3. Machine Learning
The field of machine learning summarizes algorithms that become more accurate in pre-
dicting outcomes without being explicitly programmed [34]. The basic concept is using
statistical analysis on received input data and its corresponding correct output. But
how can an algorithm learn? A succinct definition for that is given by [44]:

“A computer program is said to learn from experience E with respect to some
class of tasks T and performance measures P, if its performance at tasks in T, as
measured by P, improves with experience E.” [44, p. 2]

The interaction between task, performance and experience is shown in figure 3 and
described in the following sections. The layout is inspired by [17, 44] to give a brief
introduction to the huge area of machine learning.

2.3.1. Task T
A learning algorithm is designed to solve a specific task. This task defines how an input
should be processed and what the result of this algorithm looks like. As an example if a
robot should be able to walk than the task it tries to solve is walking. The input could
be a RGB image of its surrounding while the output is the leg’s movement.

While the algorithm is learning on a task the input it gets is called an example. An
example x is a collection of features that have been measured as a sample input of the
algorithm’s system. Mathematically the example is represented as a vector x œ Rn which
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Learning 
Algorithm

Task T Performance 
Measure P Experience E

Perform on Optimize with
regards to

Learn from

Figure 3: Overview of the relations between the learning algorithm and its task T, per-
formance measure P and experience E. While T specifies the process, E defines
how the datasets look like and P the way algorithm learns from the data.

elements are features. For an image this means that the pixel values are the features of
the example.

After defining what a task is and how an input looks like they could be distinguished
in di�erent kinds. Due to the huge variation of possible tasks the following ones just
represent a small subset of the most common machine learning tasks. For a more detailed
list see [17].

Classification One of the basic tasks of learning algorithms is specifying the input’s
category among multiple possibilities. This means that the algorithm represents
a function f : Rn æ {1, ..., k} that classifies the input example with its features
to one of k categories. The output for choosing a category is usually defined by
a numerical value y = f(x) or an one-hot vector y œ [0, 1]k for which f calculates
a probability distribution over classes. Typical use cases of this kind of tasks are
object and handwriting recognition on images [36, 57].

Regression Some tasks require continual numerical values instead of discrete classes as
output. In comparison to classification the represented function of the algorithm
is defined by f : Rn æ R. Regression is used for various motor control tasks [48]
and object localization in images [38, 54].

Synthesis and sampling A di�erent kind of task is when the algorithm is asked to
generate new data examples that are similar to those in the training dataset. The
input of this task is flexible and depends on the specific application. Current
approaches deal with Generative Adversarial Networks [18] which try to imitate
the ground truth distribution so that another network can not distinguish between
real and generated data.

10
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2.3.2. Performance Measure P
In order a algorithm can learn it has to get a feedback of how good its predicted output
was. So a quantitative measurement of its performance must be designed, usually specific
to the belonging task T. In addition di�erent algorithms can easily be compared using
the same performance measurement. In the learning process the goal of the algorithm
is to optimize its parameter towards performance gain.

A common way to measure the performance on tasks like classification is to define the
accuracy of a model. Accuracy is the proportion of examples for which the model predicts
the correct output. The opposite of it would be the error rate, the proportion of examples
for which the model predict an incorrect output. During training, the performance is
rated more precisely to optimize the internal parameters so that the output is close to
the labels. The di�erence between prediction and ground truth is measured by a loss
function which the learning algorithm tries to minimize. For classification, a popular
loss function is Cross Entropy [17]. It quantifies the di�erence between two probability
distributions p and q by adding the Kullback-Leibniz distance DKL(p||q) to the entropy
of p. Over a set of values y œ �, the Cross Entropy is defined as:

H(p, q) = H(p) + DKL(p||q) = H(p) +
⁄

yœ�
p(y) ú log p(y)

q(y) (2.2)

However, if both distributions are discrete and only defined for certain values, the
formula can be simplified by replacing the integral by a sum and eliminating the entropy
of p. In the case of classification, p is the ground truth distribution and q the prediction
while both depend on an input vector x. The value y is one of the output categories and
therefore discrete. The average cross entropy over a set of N examples and M classes
can be calculated as:

H(p, q) = ≠ 1
N

Nÿ

i=1

Mÿ

k=1
p(yk|xi) log q(yk|xi) (2.3)

The performance of a learning algorithm would be ideal if p = q where the Kullback-
Leibniz distance is minimal at a value of 0. As the entropy H(p) can not be a�ected by
q, the cross entropy also has a minimum for p = q. This is why learning algorithms are
often optimized to minimize the cross entropy of its prediction and the ground truth.

If only labels of 1/100% or 0/0% are used, the ground truth distribution is limited
to p(0|xi) = zi and p(1|xi) = 1 ≠ zi for the label z, and the prediction ẑ equally to
q(0|xi) = ẑ, and q(1|xi) = 1≠ ẑ. Therefore, the loss function can be simplified as follows
[17]:

BCE = ≠ 1
N

Nÿ

i=1
(zi log ẑi + (1 ≠ zi) log (1 ≠ ẑi)) (2.4)

This simplification of cross entropy is called Binary Cross Entropy (BCE), as it uses
binary labels. A variation of Binary Cross Entropy will be used in section 3 to measure
the performance of predicting the relevance of a clause during training, as it is 1 if the
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clause should not be used, and 0 otherwise. However, the penalty function often depends
on the application of the system and has to be adjusted for every task.

2.3.3. Experience E
As the last part of the machine learning basics the source from which the algorithm
learns should be explained. The basic component of experience is a dataset consisting
out of a collection of examples. Mostly it is split up into a training and testing part.
The training dataset is used for the algorithm to learn from while on the testing dataset
the performance is measured regarding to new examples which the algorithm has not
seen for training. This prevents overfitting and tests the generalization of the system.

Three common di�erent kinds of datasets could be distinguished depending on the
way the algorithm gains experience of the data:

Supervised learning The easiest way for an algorithm to learn how the estimated func-
tion looks like is having for every example the correct output, called label or ground
truth, and optimize it towards that. Looking from a statistical perspective super-
vised learning has a random vector x as input and learns to predict the correct
label y by estimating p(y|x). The structure of the ground truth depends on the
task which should be learned. This approach is called Supervised Learning, be-
cause a teacher is needed to show the network the correct answers. For example,
to get a network classifying objects into di�erent classes like fruits, cars and ships,
it is trained to predict the class fruit for the input object apple. However, the
ground truth has to be generated by an instructor that is mostly human.

Unsupervised learning In unsupervised learning the ground truth is missing. The al-
gorithm has to learn useful properties of the dataset structure without explicitly
showing it. Usually for deep learning the aim is to capture the entire probability
distribution either explicitly, as in density estimation, or implicitly, for generating
new image at the task of synthesis and sampling. Another possible application
after capturing the distribution is clustering the dataset in di�erent categories by
self-explored structures. So it learns a joint distribution of all features in the input
vector x œ Rn [17]:

p(x) =
nŸ

i=1
p(xi|x1, ..., xi≠1) (2.5)

Although the distribution estimation and the way of learning looks di�erent to
supervised learning they both could not be clearly separated. Given the ground
truth every unsupervised task could be converted to supervised, and on the other
hand the conditional probability of the supervised way can be solved by learning
the joint distribution of p(x, y) by unsupervised methods [17]:

p(y|x) = p(x, y)
q

yÕ p(x, yÕ) (2.6)
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A learn paradigm taking some of supervised and unsupervised is the semi-supervised
learning where for example only some examples have label but not all of them.
Unsupervised learning mostly takes longer until the algorithm has fully learned
the distribution because it has to explore the structure by itself. But as a huge
advantage no instructor is needed and so much more data is easily available. Ap-
plications of unsupervised learning are speech recognition/generation [58, 78] and
video prediction [13, 79].

Reinforcement learning A common human way to learn new things is by “trial and
error” [23, 73]. Simulating this behavior reinforcement learning is a paradigm in
which the algorithm interacts with its environment and learns from feedback or
reward that is returned. Therefore the system selects actions in an environment
in order to maximize the expected reward. Figure 4 illustrates this framework.

Agent

Environment

action
At

reward
Rt

state
St

Rt+1

St+1

Figure 4: The learning algorithm is represented by an agent that takes an action At

and receives a reward Rt+1 from the environment. Its decision is based on the
current state St and reward Rt. In games the state usually is a RGB image of
the scene the users sees and reward is given by the score [73].

An intuitive application of such learning problems is playing games [45, 27]. In
classical computer games like Atari [45] there are a limited number of possible
actions the player can take. The algorithm has to learn the expected reward of an
action based on the input that is mostly the pixel values of the game. Approaches
like AlphaGo [65] have successfully shown the possibilities of reinforcement learning
while beating humans performance.
While games have always a certain reward signal (the simplest one is winning or
loosing) some applications are missing that out. For this inverse reinforcement
learning (IRL) is usable where an expert demonstrates the task that the algorithm
should learn [2]. Reinforcement learning applies for computer games [45] and
motion planning [66].

2.4. Artificial Neural Networks
Artificial neural networks are graph based models that are inspired by the human cog-
nition [9]. A single neuron represents the smallest unit or node of such a network
interlinked by many interconnections with other neurons using its activation to com-
municate. This behavior is simulated by simplified mathematical models for which the
neurons are represented as graph nodes and the connections are weighted directed edges.
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To understand the mechanism of artificial neural networks the following section is
divided into three parts. The first paragraph deepens the mathematical model of a
neuron while the second handles with the basic architecture of a network and the third
introduces the common convolutional neural network structure.

2.4.1. Artificial neurons

Figure 5 shows the mathematical model of a single neuron. It has multiple external
inputs {x1, x2, ..., xn} which are usually the output of other connected neurons. All of
them are weighted by a corresponding parameter of {w1, w2, ..., wn} defining the rele-
vance of an input for this neuron. Finally the weighted inputs are summed up to u for
which an additional parameter b is taken into account. This variable is called “bias” and
shifts the evaluated sum with a constant value. The neuron’s output y is calculated by
taking u as input for an activation function g(u) that defines the output’s mapping to
the input. When a neuron learns it adjusts its parameter including input weights and
bias towards the expected output.

x1 

� g(.)

w1 

x2 

xn 

u y w2 

wn 

b  

Figure 5: The mathematical model of a neuron consists of a weighted sum of its inputs
that is shifted by a constant bias. The sum is given as input to an activation
function to get the final output [9].

Summarizing an artificial neuron is represented by the following equation [9]:

y = g(b +
ÿ

i

xi · wi) (2.7)

The activation function’s goal is basically reducing the output range of values because
the weighted sum u could theoretically be anything between ≠ inf and + inf. If many
neurons are cascaded the output value could easily blow up. Furthermore from a bio-
logical point of view the output of a neuron is the activation that is also fixed to specific
borders. There are several activation functions which can be used but only three should
be described further here: sigmoid, tanh and ReLU [47].

The sigmoid function is defined as ‡(x) = 1
1+e≠x and plotted in figure 6a. It is fully

di�erentiable and nonlinear while having a range of values between 0 and 1. Due to it’s
output points are very steep near to 0 it tends to push all values to either 0 or 1. So it
is a common activation function for the classification task.

Figure 6b shows the hyperbolic tangent that is defined as tanh(x) = ex≠e≠x

ex+e≠x . It can
be written by using the sigmoid function as tanh(x) = 2 · ‡(2x) ≠ 1 and shares most of
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the properties with the sigmoid function. Due to the output range of values is between
-1 and 1 it is often used as output activation function for tasks like image generation or
inside a network.

Rectified linear unit (ReLU) [47] is another more simpler activation function that is
plotted in figure 6c. It is defined by the equation ReLU(x) = max(0, x) and limits the
output to a range of [0, inf) what can still blow up. However one big advantage of this
function is that it is less computational expensive and the activations are sparse what
makes the network more e�cient and faster to learn. ReLU is everywhere di�erentiable
except at x = 0 but has no gradients for x < 0.
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Figure 6: (a) The sigmoid function maps the inputs to a range of 0 to 1 while having
high gradients near to y = 0 to bring the output more to either 0 or 1. (b) The
hyperbolic tangent is similar to the sigmoid function but has a output range
of -1 to 1. (c) A rectified linear unit (ReLU) is 0 for all input lower than 0.
All other values are processed linear so that they do not change.

Overall there is not the one activation function that can be used for every network.
Moreover sigmoid is better to use for classification output, tanh for synthesizing and
ReLU inside the network [33, 34].

2.4.2. Deep Feedforward Networks

After analyzing the concept of a single neuron this paragraph deals with the intercon-
nection and combination of multiple neurons to a network. The quintessential artifi-
cial neural architectures are deep feedforward networks, or multilayer perceptrons [17].
These models are called feedforward because information flows through the whole net-
work without any connections in which outputs of the model are fed back into itself.
Networks with such connections are called Recurrent Neural Networks (RNN) and are
described in section 2.5.

In general an artificial neural network consists of multiple layers that can be divided
into three main parts:

Input layer The first layer of a network receives information (data) from the external
environment. Usually these inputs are normalized between -1 and 1 for better
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numerical precision of mathematical operations and to keep the network’s weight
in a certain range [9, 17].

Hidden layers The main computing layers of a neural network are called “hidden layers”
because they are invisible for the external environment. The structure consists of
multiple stacked neurons that are responsible for extracting patterns associated
to the input. Neurons are only connected between layers but not within a single
layer.

Output layer The last layer of a network is composed of neurons that are responsible
for predicting the final output based on the previous hidden layers. Similar to the
input of the network the output is usually normalized as well.

The structure of a simple feedforward network with two hidden layers is shown in
figure 7a. The input is processed straight forward through the network and there is no
recurrent connection. In comparison the model in figure 7b has a feedback from the last
output layer back to the network. With this the next calculated output depends on the
result of the previous step and is able to learn from a time component (for details see
section 2.5).
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Figure 7: (a) This figure illustrates fully connected feedforward network with two hidden
layers. All neurons of one layer are connected to every neuron of the next layer
with no feedback connection [9]. (b) In comparison to feedforward network a
RNN has a feedback connection from one later neuron back to one in a earlier
layer [9].

In the example of figure 7a all input nodes are fully connected with all neurons of the
first hidden layer. Every neuron of this layer has therefore n inputs and n corresponding
weights next to one bias that have to be adjusted by learning. With n1 neurons the
first hidden layer contains (n + 1) · n1 learnable parameters. Layer two has therefore
(n1 + 1) · n2 and the output layer (n2 + 1) · m parameters. With an increasing number
of neurons the amount of parameters blows up what gets computational expensive and
hard to learn. Sparser layers are for example convolutions which are described in the
next paragraph.
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2.4.3. Convolutional Neural Networks

A special kind of networks for processing data that has a known, grid-like topology
like images, are Convolutional Neural Networks (CNN) [35]. They are based on the
primary visual cortex of the brain and strongly inspired by neuroscientific research.
CNNs usually consist of two important layers: the convolution layer that is a variation
of the mathematical operation called “convolution”, and the pooling layer that reduces
the inner width and height dimension of the data.

An example to motivate the usage of convolutions is having an RGB image of 64x64
pixels as input to a network. If the first hidden layer would consist of a fully con-
nected layer with for example 1024 neurons, the needed amount of parameters would be
64 · 64 · 3 · 1024 = 12, 582, 912. One way to reduce this number is by considering the
geometry of the image. A pixel correlates much more with its close neighbors than with
far o� pixels [3]. Since the correlation of inputs is represented in the weights of a neuron
the connections could supposedly be reduced to only a local region of the data, called
kernel or patch, like 5x5 pixels (see figure 8). This leads to that the structure of the
hidden layer is a similar grid to the input. Convolutional layers are going even further
by sharing the weights between all neurons. In addition one layer does not only consist
of one weight set, but multiple neuron grids are stacked on each other which are called
channels. For example, applying a standard convolution layer with a 5x5 kernel and 64
channels on an input image of the size 64x64px, the first hidden layer would consist of
64 · 64 · 64 = 262, 144 neurons but only have 5 · 5 · 3 · 64 = 4, 800 weight parameters.

Figure 8: A neuron in a convolutional layer is only connected to a local region of the
input. To apply di�erent weight setting on the same kernel, multiple neurons
are stacked behind each other which do not share the weights. However all
neurons in one channel have the same to reduce the number of parameters
[28].

The same layer can also be applied on di�erent data types which might be one di-
mensional. Therefore a kernel of the size 3x3 is transformed into a kernel of 3x1 and
only has a local region over one dimension. To expand the receptive field without in-
creasing the number of parameters, input neurons could be skipped. This is described
by dilated convolutions [82] with a dilation factor d which determines the neurons that
should be skipped. If for example d = 2, only every second input is used for the con-
volution. Figure 9 illustrates the comparison between standard and dilated convolutions.
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(a) Standard convolution (b) Dilated convolution

Figure 9: (a) A simple one-dimensional convolution with a kernel size of 3. (b) Dilated
convolutions skip nodes in the local region. The example shows a dilation
factor of 2 where the immediate neighbours are left out. Image inspired by
[39].

The resulting output has the same size as the input, but might not be so rich of
information anymore, especially when using ReLU as activation function (many outputs
are 0). To concentrate on the important results, a pooling layer [34] reduces the height
and width dimension by applying operations like max on all inputs of its kernel. It is
worth mentioning that pooling is done on each channel separately. The max pooling
operation is inspired by the biology where neurons that are strongly activated, exceeds
their neighbors and weaken their influence. Figure 10 illustrates the mechanism of a
max pooling layer.

Figure 10: This figure illustrates the procedure of a max pooling layer with a kernel size
2 and stride 2. On every 2x2 pixel patch a max operation is applied to extract
only the highest values. This reduces the dimensionality of the input by the
factor of 2 [28].

The overall architecture of Convolutional Neural Networks consists of multiple stacked
convolutions and pooling. Due to the output structure depends on the task of the
network the final layers are adjusted to it. For example the task of classification ends
up into a 1D-vector, so that the final layer usually is fully connected.

2.5. Recurrent Neural Networks
Next to the Convolutional Neural Networks that are specialized for processing a grid
of values, Recurrent Neural Networks (RNN) [56] are focused on processing a sequence
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of values x0, ..., xn. Of course such a sequence could also just be stacked together to
one big input to a multilayer network, but this would not be parameter e�cient. For
example considering a model for language understanding that should extract a year out
of a sentence. Two samples are “I went to Nepal in 2009” and “In 2009, I went to Nepal”
[17]. The corresponding word appears in the first sentence at sixth and in the other at
second position. Still the parameters could be shared between these two time steps.

The following paragraphs deepens the topic of RNN by describing how recurrence
could be modeled in a neural network and presenting the Long Short-Term Memory
(LSTM) [21] for long-time dependencies.

2.5.1. Modeling recurrence

Recurrent Neural Networks have, as in section 2.4.2 described, feedback connections
from a neuron’s output back into the network. The values of these connections are held
over time steps, so that processing input xt depends on computation results of xt≠1.

A better understanding of a recurrent network is unfolding it over multiple time steps,
as illustrated in figure 11. Network A gets xt as input to generate its output ht. In
addition there is a connection over time steps, so that xt≠1 influences the prediction.
Due to xt≠1 is therefore influenced by xt≠2 and so on, ht depends on the whole previous
sequence x0, ..., xt.

Figure 11: Recurrent Network A can be seen as a chain of multiple time steps with
feedback connections between them. Due to it is the same network the same
weights are used for processing the input and the recurrent output of previous
step influences the final prediction [51].

The design and position of the feedback connection is based on the task. Some exam-
ples are:

• RNNs that produce an output ht at every time step and have recurrent connections
between hidden units as shown in figure 11.

• RNNs that produce an output ht at every time step that is taken as input for the
next time step. A common application for this design is video prediction [13, 79].

• RNNs that only produce an final output after reading a whole sequence. For this
hidden units have recurrent connections in between to process and extract useful
information out of every single input.
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The detailed structure inside the network is not specified. Convolutional Neural Net-
works can be combined with RNN by taking the output of one convolution as input in
the next time steps. However the computation of xt strongly depends on xt≠1, but if
long time dependencies are needed like for example in complex language understanding,
other methods outperform for this task. One example are the Long Short-Term Memory
Networks (LSTM) [21] that are explained in the next paragraph.

2.5.2. Long Short-Term Memory Networks

As [6, 20] have shown it is di�cult to train recurrent neural networks to store information
over a long time. Gradients flowing backwards in time tend to either vanish, what causes
a need of training for very long time or does not work at all, or blow up, so that the
weights are not stable anymore. To overcome these problems [21] proposed a much more
e�cient gradient-based method called “Long Short-Term Memory” (LSTM).

LSTMs are a special kind of RNN which enable an constant error flow over multiple
time steps. Between the time steps a cell state and the last output is passed through
building up in a chain like structure (see figure 12). Inside the module four neural
networks layers interact with each other to decide which information will passed further
(remembered) and which will be added. The following paragraph describes this behavior
more detailed using the name assignments of [51].

Figure 12: LSTMs are build up in a chain-like structure over time where they pass the
cell state ct and hidden state ht to the next time step. The inner structure
consists of a “forget gate layer”, that selects which states should stay, “input
gate layer”, that chooses the new information which should be added to the
states, and “output gate layer” for calculating the next hidden state [51].

The first step in a LSTM is the “forget gate layer”. In here a mask of numbers between
0 and 1 are calculated in respect to the current input xt and the last output/hidden state
ht≠1 to determine which information of the cell state ct≠1 should be kept (respectively
1) and which to get rid of (respectively 0). Mathematically this layer could be written
as follows [21]:

ft = ‡(Wf · [ht≠1, xt] + bf ) (2.8)
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Next the module has to decide which information should be updated based on the
current time step. This is done by a sigmoid layer it, calculating an update mask similar
to the forget gate layer, and by a tanh layer to create the new cell state values C̃t.
Combining the mask and the new states with a point-wise multiplication to an “input
gate” the cell state ct can be determined in the following way [21]:

it = ‡(Wi · [ht≠1, xt] + bi)
C̃t = tanh(WC · [ht≠1, xt] + bC)
Ct = ft ú Ct≠1 + it ú C̃t

(2.9)

The last step is to calculate the “output gate” for the current time step based on
the new cell state Ct. As the previous layers a filter is implemented by a sigmoid layer
taking xt and ht≠1 into account and used on the cell state which was pushed through
a tanh function to scale the values between -1 and 1. The final output of the LSTM is
described by the following equation [21]:

ot = ‡(Wo · [ht≠1, xt] + bo)
ht = ot ú tanh(Ct)

(2.10)

There are many variants on LSTMs. [15] adds “peephole connections” to every gate so
that they also take the cell state into account. Another variation is the Gated Recurrent
Unit (GRU) [8] which simplifies the LSTM a bit. The changes contain merging the
forget and input gate into a single “update gate” and combining the cell state Ct and
hidden state ht.

LSTMs outperform on tasks where recognizing long-term dependencies is an essential
key like speech recognition [58, 16] and language modeling [68, 70]. The application of
LSTMs are extended by using convolutional LSTMs [64] so that they can also be used
for video prediction [79].

2.6. Related work
The following section briefly introduces related work which was taken into account for
this project. The first paper, DeepMath [4], deals with fundamental research of embed-
ding clauses to evaluate them with several neural network architectures. The second
subsection presents another paper that is based on the previous one and extends the
research on networks for clause embedding to more complex and deeper models.

2.6.1. DeepMath - Deep Sequence Models for Premise Selection

The first attempt to combine automated theorem proving with deep learning was made
by [4]. The general idea is that a network processes pairs of clauses and negated con-
jecture, and predicts whether the clause is likely to be useful for the proof or not. As
clauses have an arbitrary size, an embedder network is developed that compresses them
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into a fixed size feature space. Besides, the negated conjecture is also embedded with a
similar network. Both feature embeddings are concatenated, and two consecutive fully-
connected layers are applied ending in a single final output. This output determines the
evaluation of the input clause. The overall architecture is visualized in figure 13.

Axiom first order logic 
sequence 

CNN/RNN Sequence model

Conjecture first order logic 
sequence 

CNN/RNN Sequence model

Concatenate embeddings

Fully connected layer with 
1024 outputs

Fully connected layer with 1 
output

Logistic loss

Figure 13: The basic structure for premise selection with deep learning proposed by [4]
contains two embedding networks, one for the clause to be evaluated, and the
other for the negated conjecture of the current problem. Both feature vectors
have a fixed size and can, therefore, be processed by two fully connected
layers. The final output constitutes the evaluation of the clause.

The performance of this heuristic concept strongly depends on the network archi-
tecture used for the clause and conjecture embedding. Therefore, di�erent models of
Convolutional and Recurrent Neural Networks are tested in [4]. The first step was com-
paring architectures on character level that treat formulas as sequences of single charac-
ters embedded by an 80-dimensional one-hot vector, and word level, where embeddings
for constants, functions and other symbols are learned by embedding the axioms of their
defining statements. The second approach has the advantage that it uses smaller inputs,
especially for functions with long names, but needs an extensive vocabulary for datasets
with many di�erent symbols.

The network architectures evaluated in [4] on character level were an LSTM [22] and a
GRU [8] model, a pure convolutional architecture with final max-pooling over channels,
and a combined network of convolutions and LSTM. For word-level, only CNNs were
tested. The overall result was that all networks improved the proof search, but convolu-
tional models outperformed recurrent networks. Especially the LSTM needed a massive
amount of training steps before reaching its final performance. As a conclusion, deep
learning can help to find new proofs and learn heuristics, even with shallow networks.

2.6.2. Deep Network Guided Proof Search

Another related work considered for this project is "Deep Network Guided Proof Search"
[39]. The ideas of the paper are similar to [4], but expand the evaluation of clause embed-
ding networks to more complex and deeper models. All networks rely on a vocabulary
that is used for embedding clauses on word level. The features of a symbol are learned
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during the training process. Overall, three di�erent architectures are compared that
should be shortly presented here:

Simple convolutional model The first model consists of three stacked convolutions
with a patch size of 5 and 1024 channels. ReLU is used as an activation func-
tion. Although the network is relatively small and might not be able to learn great
feature complexity, it can be computed very fast and can process more clauses
than networks with a higher complexity at the same time.

WaveNet Another approach is the WaveNet [77] that was originally designed for pro-
cessing raw audio. The network consists of three stacked WaveNet blocks that each
contains seven dilated convolutions with increasing dilation by 2 (d = 1, 2, 4, ..., 64).
Instead of ReLU, gated activation functions tanh(x) ú ‡(xÕ) are applied where x

and x
Õ are computed on the same input but di�erent weights for the layer. The

output of a WaveNet block is added to its input by using residual connections.
Moreover, dropout [69] is used between blocks for generalization.

Recursive neural network The third network architecture is based on recursive parser
networks [67]. The networks’ structure is a function of the parse tree of the first-
order logic formula and so adjusts to the input. Four di�erent layer types are
distinguished:

• or for a disjunction of two inputs
• and for a conjunction of two inputs
• not for a single input
• apply for applying a function on two inputs

All of the above operations are implemented by fully connected layers or tree
LSTMs [74]. The weights for each type are shared across the same tree.

For all approaches, the embedding architecture is shared for the clauses to be evaluated
and the negated conjecture but with separate weights.

The networks are also evaluated on first-order problems of the Mizar Mathematical
Library (MML) [19]. Firstly, to check if the networks can distinguish between useful
and not useful clauses at all, the accuracy is evaluated on a set of proofs that are
already solved by automated theorem provers. All approaches show an accuracy of
approximately 77% up to 81.5%. However, the recursive networks had the worst results
and are also ine�cient in the aspect of execution time, as the network structure has
to be constructed for each clause. The WaveNet models slightly outperform the simple
convolutional networks in accuracy.

When applying the networks in E [60, 61], the proof search was more often successful,
if faster heuristics like the auto-mode of E are used in parallel. This is done either in
a hybrid approach, alternating between the priority queues of the network and existing
heuristics, or a switched approach where the network is solely used at the beginning,
and the auto mode takes over after, i.e. 20 minutes. In experiments, the simple CNNs
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outperform the WaveNet models due to faster evaluation. Overall, 7.36% of all hard
statements are solved by several approaches in union that constitutes an improvement
of 4.7% with deep learning guidance.
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3. Network model
Selecting the right clauses requires a wide context. To apply deep learning techniques
for this complex task, the problem needs to be formalized. The network should extract
significant features of a clause and be able to determine its value for a certain proof
task. Like other clause selection heuristics, the network separately predicts a weight for
every unprocessed clause and computes it only once. The inputs used to compute an
evaluation ideally are the current clause, the conjecture which should be disproved, and
all processed clauses.

However, there needs to be a trade-o� between accuracy and computational e�ort. A
network selecting the right clauses for every proof without making any mistakes might
be perfect, but is not possible with current techniques. So, to use a network with lower
accuracy, it has to be small and fast to still find all relevant clauses. Yet, the task stays
complex and requires more layers with a higher computational e�ort. Finding the right
trade-o� between these two counterparts is a key aspect for creating clause heuristics
with deep learning.

To introduce the network concept that was developed in this student project, the
overall architecture is described in section 3.1.1. Next, the vocabulary (3.1.2), embedding
network (3.2.1) and combination network (3.2.2) are discussed in more detail and the
section finishes with an evaluation of the performance measurement in 3.3.

3.1. General concept
As presented in section 2.6, the current state of the art uses a two step approach with
an embedding and subsequent combiner network to evaluate clauses with deep learning.
In this project, a similar approach is applied but significantly di�ers in the vocabulary,
network models and training techniques. This section gives an overview of the adjusted
architecture and discusses the changes of the vocabulary part.

3.1.1. Architecture

The network architecture is based on [4, 39] and illustrated in Figure 14. To make
it easier to clarify the concept, an example retrieved from the proof GRP004-2 of the
TPTP library [71] is added in the figure and explained step by step in the following
paragraphs.

The basic inputs to the network are the clause which should be weighted and the
negation of the conjecture to be proved. For instance, the clause is prod(X,identity)=X
and the negated conjecture prod(a,inv(a))=identity where X is a variable and a and
identity are constants. The purpose of the network is now to decide whether the clause
is likely to be useful for the proof or not.

The first step is to embed all symbols into a feature vector. This is done by a ta-
ble lookup of a vocabulary that contains a trainable feature vector for every constant,
variable, function name and parentheses. Both the clause and conjecture share the
same vocabulary. In the example of the figure with a vocabulary vector size of 512, the
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Negated conjecture

Clause

Embedding
network

Combiner
networkVocabulary

Embedding
network

Feature vectors

~prod(a,inv(a))=identity

prod(X,identity)=X

Symbol embedding

Shape: 7×512

Shape: 11×512 Shape: 1024

Shape: 1024 Prediction [0,1]

Shape: 1024

Initial clauses

Figure 14: The overall network architecture with an example retrieved from GRP004-
2 [71]. The clause and conjecture are embedded by a vocabulary into a feature
matrix, whose shapes are based on the examples. These are processed by two
networks with the same architecture but di�erent weights, resulting in a fixed
size vector of, for instance, 1024. A combiner network combines the clause’s,
conjecture’s and original axioms’ features to obtain a final score. In this
case, the optimal prediction would be 1 (not useful), because the positive
conjecture is already one of the initial clauses.

clause has seven symbols (prod, (, X, identity, ), =, X) resulting in a feature matrix of
7 ◊ 512, and the conjecture similarly with eleven symbols. A further discussion about
the vocabulary is given in section 3.1.2.

Next, an embedding network is applied on the clause and conjecture features. Both
networks have the same architecture but di�erent weights. As the input can vary in its
first dimension, the network mainly consists of convolutions to process di�erent input
sizes. The output is a one-dimensional feature vector of a fixed size generated by a
max pool over features on the last layer. In section 3.2.1, a dilated dense block for
the embedding network is proposed combining a broad context with a complex and fast
architecture.

After the clause and conjecture are reduced to a fixed size, a combiner network pro-
cesses both vectors to get a final score between 0 (useful) and 1 (not useful) for the clause
selection heuristic. Since the dimensions of the inputs are constant, fully connected lay-
ers can be applied. However, the evaluation would ideally depend on the current set
of processed and unprocessed clauses. As a compromise to the extensive runtime that
would be needed, a knowledge base of the original axioms is extracted at the beginning
of every proof search and considered as an additional input into the combiner network.
Thus, the prediction of a single clause depends on a wider proof understanding than
only the conjecture. In section 3.2.2, the details of the knowledge base extraction are
further explained.

3.1.2. Embedding vocabulary

The vocabulary lookup is the first step of the embedding process. The approach de-
scribed in [39] collects all constants, function and variable names, logical operations and
parentheses into a vocabulary during the data collection and learns a separate feature
vector for each symbol. In this project, the same approach is used, but some features
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are shared between similar symbols.
For a good understanding of clauses, the network must be able to separate between

for example constants and variables. To support this, the vocabulary is splitted into
the symbol names itself and its type with each half of the original channel size (256 for
the example in Figure 14). This means, that all operations, constants, variables and
functions are clustered, and allocated to a shared feature vector. Functions of di�erent
arities are considered as distinct types and get separate features. As an example, when
the clause less(x,negative(y)) with x and y as variables is embedded, less and negative
do not share their type feature vector because they have di�erent arities, but x and y
do. Figure 15 illustrates this approach with a second example.

Clause

Vocabulary

prod(X,inv(X))=identity Symbol embeddingShape: 10×256

Symbol names

Symbol types

Shape: 10×256

||

Shape: 10×512
Constant

Special symbol (parantheses,...)

Function with arity 2

Variable

Function with arity 1

Figure 15: When embedding a clause or conjecture, the features of the symbols’ names
and their types are looked up. Therefore, all variables share half of their
feature vector as well as constants, special characters and functions distin-
guished by arity. The colors of the type embedding are explained on the
right.

3.2. Network architecture
Evaluating a clause resembles the task of natural language processing where a sequence
of an arbitrary number of words has to be understood and interpreted. Mostly, recurrent
networks are applied that process each symbol separate and pass internal features as an
input to the next iteration [34, 17]. However, convolutional and recursive networks
were also tested by [39] for clause evaluation. In this project, a novel architecture for
the embedding network is proposed that combines a dense block [24] with multiscale
dilated convolutions [82]. This model is introduced in section 3.2.1. The architecture
of the combiner network is expanded by a knowledge base extraction using RNNs and
discussed in section 3.2.2.

3.2.1. Dilated Dense Embedding Network

The greatest challenge in learning ATP heuristics is to develop a suitable network ar-
chitecture that can compress an arbitrary clause into a fixed size feature vector based
on which it can be decided whether to use the clause for a proof attempt or not. The
complexity is constrained by the runtime performance as every generated clause must
be weighted during the proof search.

Experiments of [4, 39] have shown that recurrent and recursive networks perform badly
on the task of clause embedding in comparison to convolutional models. In addition,
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the computational e�ort is significantly greater as every symbol has to be sequentially
processed by i.e. an LSTM cell. However, shallow convolutional models only consider
a small number of anchor symbols as their patch size is limited. In this project, a new
network architecture is developed that increases the receptive field and actively supports
feature sharing between di�erent patch sizes.

The principal component of the embedding network is a 5-layer dense block [25] which
connects each layer to every other in a feed-forward fashion. The feature maps of every
previous layer are used as input into all subsequent layers whereas 1x1 convolutions
reduce the number of input channels before each convolution with patch size 3. The
feature reduction decreases the number of parameters that have to be learned without
loosing important context information like max pooling might. As an example, the last
block has an input size of 4 ◊ 1024 channels. Using a convolution with a kernel size
of 3, the layer contains 3 ◊ 4 ◊ 1024 = 12, 288 parameters. In comparison, a feature
reduction needs only a third of the weights. The input to the following convolutional
layer has a fourth of the original channel size, so that only 1◊4◊1024+3◊1024 = 7, 168
parameters need to be optimized. This concept is even more e�cient, if multidimensional
convolutions (i.e. 2D for image processing) are applied on the input [25]. Having a great
amount of parameters has the problem that the network easier overfits and training issues
like gradient vanishing and normalization are enhanced, especially for small datasets
[26, 17].

However, stacked receptive fields of 3 do not actively increase the field of view so that
each final neuron has a theoretical receptive field of only 13 although the e�ective field is
even smaller [40]. Considering an average clause length of about 30, a broader contexts
needs to be provided for the embedded clause vector. Therefore, every convolution in
the dense block is replaced with dilated ones [82] increasing the dilation rate by factor 2
throughout the layers. This leads to an overall receptive field of almost 64 so that much
greater clauses can e�ectively be analyzed. Still, using dilated convolutions often comes
with the disadvantage of losing local information. With the concept of a dense block,
the feature maps are shared among all layers, and so local information is passed through
the network as well as those from greater receptive fields are. Moreover, the last layer
is a weighting of features where the network can learn the best combination of di�erent
field of views. With a post-processing convolution of patch size 3, the complexity of the
network is increased which allows a last local view on much richer features in contrast
to the first convolution, which is directly applied on the vocabulary tokens. A final max
pool over channels reduces the output to a fixed size vector. Figure 16 illustrates the
embedding architecture.

Compared to the WaveNet [77] used by [39] the proposed network has fewer layers
and therefore a smaller computational e�ort. The three WaveNet blocks contain each
7 gated units that consists of two convolutions with a patch size of 3. Considering
only the multiplications of weights and inputs for the layers, the overall number of
operations would be #Blocks ◊ (#Gated Units ◊ 2) ◊ PatchSize ◊ #InputChannels ◊
#OutputChannels = 132, 120, 576. In contrast, the dilated dense block needs by using
feature reduction less multiplications per block, summing up to 34, 603, 008 operations
overall.
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Clause features
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Dense block 0

Dense block 1

Dense block 2

Dense block 3

Dense block 4
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(a) Overall embedding architecture

Dropout
Dropout rate 20%

Dropout
Dropout rate 20%

Block x

||

...

Dilation Rate 2 
Feature size 512

Patch size 3

Dilated Convolution
x

Feature size 512
Patch size 1

Feature Reduction

(b) Dense layer

Figure 16: (a) The embedding network consists of 5 dilated dense blocks that share their
output features with all successors. The first block does not contain an feature
reduction as it is applied on the vocab. A final 1x1 convolution combines all
feature maps with a last local view of an patch size of 3. (b) Every dense layer
starts with a 1x1 convolution reducing the number of features and parameters.
To increase the receptive field, the subsequent convolution has a dilation rate
between 1 and 16, based on its position in the embedding network. 20%
feature-wise dropout [69] between the layers for regularization and a feature
size of 512 is used.

In addition, the Dilated-Dense block explicitly supports the feature sharing between
di�erent receptive field sizes. Also, by using 1x1 convolutions over all features of several
fields of view, the network can learn even more complex functions for combining those.
So, smaller terms or axioms like odd(X) can easily be analyzed and reused for larger
context like the example in Figure 14. The WaveNet constrains the information gain
per receptive field with gated units whose output is added to the input features, because
otherwise local information might be lost due to the large dilation factor.

Nevertheless, a simple 3-layer CNN is still much faster than a dilated dense block. To
outperform these shallow models for finding new proofs, the accuracy of the proposed
network is expected to be higher than the one from [39]. that is discussed in section 4.3.1.
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3.2.2. Combiner network

The final step of the network architecture is the combination of the clause and conjecture
features to predict a heuristic score. As the size of both inputs are known and determi-
nate, fully connected layers with ReLU [47] activation and a channel size of 1024 are used
within the combiner network. The last layer ends up in only one output constituting
the final prediction. In order to obtain a score between 0 and 1, a sigmoid activation
is applied instead of a ReLU. To summarize, the combiner network has overall three
fully connected layers and is illustrated in Figure 17b. Nevertheless, a third input, the
knowledge base, is enclosed which is discussed in the next paragraphs.

When selecting the next clause for a proof, the decision would ideally depend on the
full proof state i.e. both the current processed and unprocessed clause set. However, as
both sets dynamically change and increase over time, it would be too computationally
expensive to consider the full current state for all clause weight calculations. Therefore,
only the initial clauses are processed once at the beginning of the proof to generate
a solid foundation for better clause heuristic. Theoretically, an analysis of the initial
clauses can be su�cient to find a proof as all possible derivations are based on these
clauses, but this task would be even more complex for a network. However, without
knowing any dependencies between clauses, no substantial prediction for a proof search
can be made. A good example for this situation is the clause in figure 14. If the positive
conjecture would not be in the initial unprocessed set, this clause might be useful for
a proof. Moreover, if the training dataset contains di�erent initial clause sets for the
same negated conjecture, the network is simultaneously trained to predict 0 and 1 for
the exact same inputs. So, without considering the initial clauses for a clause evaluation,
the prediction strongly depends on the set of initial clauses given in the training dataset
and the network could never reach a su�cient state for a random set of clauses.

In order the implement such an approach in a neural network, the initial clauses are
embedded with the same network that is used for the clauses to be evaluated followed by
the first fully connected layer. To combine the features of di�erent clauses and end up in
a constant state size, a recurrent neural network is sequentially applied to all clauses. An
LSTM structure [21] for the RNN provides an e�cient gradient backflow over multiple
timesteps (see figure 17a). Moreover, the gate units only pass important information of
each clause to the state, so that the knowledge base is refined every step. In contrast
to the standard application of a LSTM, just the final state is considered instead of a
continuous output, and the state should be independent of the clause order. Therefore,
the output gate is removed and the current state is replaced by the hidden state with a
tanh activation.

To evaluate a clause, a tanh activation function is applied on the final state to reduce
the values to the range -1 and 1, and concatenate it with the features of the first fully
connected layer of the combiner network. A second consecutive layer combines the
knowledge base with the clause’s features, before the final score is calculated.

The evaluation time of a clause does not reasonably increase through this approach as
only one layer with few parameters is added to the network. The computational e�ort
is negligible as the embedding network has significantly more expensive layers. Still, an
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(a) Simplified LSTM architecture.
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(b) Combination network

Figure 17: (a) Compared to the LSTM introduced by [21], the architecture does not have
an output gate and only one hidden state. The input features are extended
by the last state with a tanh activation to compress the input between -1
and 1. Based on these, the hidden state is updated via the forget and update
gate. (b) The combination network is built up similar as in [39] and consists
of 3 fully connected layers. For initial clauses, the output of the first layer is
directed into the LSTM. Otherwise, the final hidden state is merged to the
current features and processed by two additional layers.

overview of the initial clauses are crucial for good clause heuristics and is expected to
support the network to evaluate clauses.

3.3. Performance Measurement
Performance measurement is a key factor for training neural networks. Ideally, actual
proof deductions would be simulated at every training step and the network is trained
on its own selections. However, this concept would take very long to train, especially for
hard proofs, and so, the evaluation has to be broken down to a simpler and faster loss
calculation. For this, E [60, 61] was used to generate positive and negative examples for
all proofs in the dataset (details in section 4.1 and train the network on these clauses.
Still, the data is strongly imbalanced because every proof only has a few positive clauses,
but the number of negatives could be nearly unlimited. This section gives an overview
of the methods used to encounter this problem: handling imbalanced data with closely
selecting which examples to show next, and adjusting the loss.

3.3.1. Handling imbalanced data

Having imbalanced training data can cause a network to only focus on a subset of classes
and therefore performing badly on the rare ones as shown in [63, 81]. Therefore it is very
important to consider how the training data is handled to optimize the network. In this
project a subset of methods proposed by [81] are used to support the training process
and described inclusive their deployment on proofing clauses in the following section.
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One common technique to handle imbalanced data is to just train the rare examples
more often than the easy ones. As the network classifies a given clause if it might be
helpful for a proof or not, the balance could be achieved for positive or negative clause
examples. However, there are significantly more examples of clauses that are not useful
for a proof, as mostly, only a small subset of all possible derivations already leads to a
proof [62]. Training positive examples as often as negatives, they have to be repeated
very often and the network easily overfits. Therefore, every batch consists of 3 times more
clauses that are not useful for a proof than positive, and the loss function is adjusted to
this imbalance which is discussed in the next section. A static data sampler is needed for
the training process where the proportion of positive and negative examples of a batch
stays the same during the whole training. Otherwise, the loss gets inconsistent and the
network might be unstable [81].

However, many negative examples resemble one another and are therefore easy to
learn. To concentrate on the hard ones, a dynamic data sampler is implemented that
records the losses lately obtained for every single clause. One fourth of all negative
examples of a batch are determined by having the highest loss in a proof. A similar
approach was introduced by [4] and improved the accuracy of the model from 61% to
about 66%.

Another, more important data balance has to be achieved for the negative conjectures.
Its embedding network has much less examples than the one for clauses and therefore
it is even more important that the small training data is not biased. Simple static data
sampling methods are not su�cient because the negative conjectures can not simply
classified into rare and common examples as it can only be guessed which conjectures
hold the most information for the network. This is why the data sampling methods
Random Upsampling (RUS) and Downsampling (RDS) [63] are used over proofs. Ran-
dom undersampling randomly removes examples from majority classes until the desired
balance is achieved, while random downsampling duplicates di�cult and rare examples
on which the network has performed badly and got a high loss. With this method the
data is dynamically balanced during the training and adjusts to the current loss. As
some proofs contain much more clauses than other, the initial distribution of the training
data is determined by the number of negative and positive clauses combined while the
positive ones are weighted stronger.

3.3.2. Loss evaluation

As mentioned in the previous section, the loss function for the score prediction has to
be adjusted to the strong class imbalance.

One possible loss function is as proposed in [39] a logistic loss on whether the clause
is needed for the proof, for which the output is trained to be p = 0, or not, respectively
p = 1. The labels are switched compared to [39] to be consistent with other clause
heuristics for E. However, there is a significant di�erence in selecting an unnecessary
or missing out an important clause. If the network falsely predicts a score of p = 0
for a clause, it will be processed as well, but may not increase the runtime noticeably.
Despite, if the network calculates a score near to p = 1 for a clause that is essential
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for the proof, the search will not end until all clauses with a lower score are processed.
Therefore, the loss function is adjusted to this dilemma.

First of all, the loss function is based on the Binary Cross Entropy (BCE) and therefore
depends on the clause’s label y. For clauses that should not be processed (y = 1) a
logistic loss is used, but restricted between 0 and 1. The loss is prevented to convert
to infinity for predictions close to zero, because it makes no di�erence if the network
predicts 0.05 or 0.01 for a clause as it would be probably processed anyway. In contrast
for clauses with y = 0, it is important to reduce false predictions as much as possible
because the di�erence between p = 0.98 and p = 0.99 can cause many unnecessary
clauses to be processed before the clause needed for the proof. This is the logistic loss
is not changed here.

When the dataset contains many easy examples compared to a few hard ones, the
network should concentrate on the hard ones, especially for clauses with y = 0. To
handle this imbalance between easy and hard examples, the Focal Loss [37] is adapted
for this application to down-weight well classified examples. Overall, the loss function
can be summarized as follows:

L(p) =

Y
]

[
≠–1 ú log

1
1+pú(e≠1)

e

2
ú (1 ≠ p)“ for y = 1

≠–0 ú log (1 ≠ p) ú p
“ for y = 0

(3.1)

In experiments the parameters –0 = 1.25, –1 = 1 and “ = 0.5 lead to the best results.
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4. Experiments
After introducing the network architecture, this section presents the implementation
and experiments of the model. Therefore, the first part deals with the dataset that is
used to train and evaluate the network on. Implementation details of the training and
integration in E [60, 61] are discussed in the second subsection. Finally, the experiments
of the network on the evaluation dataset are described, and the results on new, previously
unsolved proofs in E presented.

4.1. Dataset
The dataset for training and evaluation plays a significant role in the networks’ perfor-
mance. In this project, the TPTP Problem Library [71] is used that contains several
test problems for automated theorem proving. The network is trained in a supervised
manner for which proofs are deducted by using E. To limit the size of the vocabulary,
only a subset of TPTP is selected. Section 4.1.1 reviews the selection process while the
next passage deals with the data generated by proof deduction.

4.1.1. Data Selection

As the network learns the features of the vocabulary by itself, it is important that every
symbol appears more than once in the dataset. The worst case would be that a symbol
is solely included in positive examples. The network would save this in the vocabulary
features and ignores the rest of the clauses, although in other, unseen proofs the symbol
might appear in negative examples as well.

Therefore, the major selection criterium is to have as many proofs as possible with a
minimal vocab. Examples of problem domains like Semantic Web (SWB) and Software
Verification (SWV) generate a huge vocabulary with many symbols that are rarely used.
Also, small domains like Biology (BIO) and Geography (GEG) are excluded because of
too few examples. The selected domains for the dataset are:

• The domains of algebra: LDA (left distributive algebra), REL (relation algebra)
and ROB (Robbins algebra).

• The domains of logic: COL (combinatory logic) and LCL (logic calculi).

• Other mathematical problems: FLD (field theory), GRP (group theory), NUM
(number theory), RNG (ring theory) and SET (set theory).

• The domains NLP (natural language processing) and PRO (processes). Problems
in natural language processing were only selected if they do not include the Word-
Net axiom set with over 380,000 constants.

The distribution of file numbers can be found in table 1.
As another selection criteria, proof examples deducted by E are also excluded from

the training dataset if the proof contains more than 150 positive examples or 100 initial
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clauses. Examples with too many positive clauses are hard to train providing a high
loss, and as a result, the network concentrates on this proof reducing the accuracy for
negative examples on all other examples. The initial clauses are also limited because the
LSTM only processes 32 clauses per proof in a batch. If a proof contains more initial
clauses, context is missing, and the weights would rather be trained to ignore the LSTM
output than to pay attention to the knowledge base.

4.1.2. Data Generation

After selecting the problems, proof examples have to be generated. Therefore, E [60,
61] is configured with the three di�erent heuristic settings: FIFO, Clauseweight and
Auto208. The First-In/First-Out heuristic has the advantage to find short proves while
clauseweight prefers small clauses [62]. Both configurations help the network to learn,
as short proves imply fewer positive clauses and less context to extract, while for short
clauses the network does not need a very wide receptive field. However, the third con-
figuration, Auto208, deducts the most proves and therefore provides the most examples.
It is a hybrid approach of 5 di�erent heuristics with the following settings:

Auto208 - configuration G_E__208_C18_F1_SE_CS_SP_PS_SOY

1*ConjectureRelativeSymbolWeight(SimulateSOS,0.5,100,100,100,100,1.5,1.5,1),

4*ConjectureRelativeSymbolWeight(ConstPrio,0.1,100,100,100,100,1.5,1.5,1.5),

1*FIFOWeight(PreferProcessed),

1*ConjectureRelativeSymbolWeight(PreferNoGoals,0.5,100,100,100,100,1.5,1.5,1),

4*Refinedweight(SimulateSOS,3,2,2,1.5,2)

The number in front of each heuristic determines the frequency with which a clause is
selected from its priority queue. The heuristic ConjectureRelativeSymbolWeight takes
clauses that are similar to the conjecture, while Refinedweight prefers smaller clauses.
Additionally, FIFO checks that no clause is delayed infinitely. After the heuristics’
name, more settings are individually specified for each heuristic (for details see [61]). In
general, hybrid approaches are likely to deduct more proofs than single heuristics [60].

Table 1 summarizes the dataset with the number of generated proofs for each heuris-
tic1. All proof attempts were executed with a memory limit of 128GB and a CPU time
limit of 1800 seconds using the StarExec cluster of the University of Iowa [76]. When
applying the FIFO heuristic, a proof can only be found for 824 examples. This set is too
small to train a network from scratch as the proofs might be biased. The clauseweight
dataset contains more than twice as many examples which might be su�cient for a first
training. However, over 3,000 proofs can be generated with the heuristic Auto208. The
disadvantage of this dataset might be that the proof structure di�ers between di�erent
problems as multiple heuristics are applied. The network is not able to adjust to one
structure and gets a higher loss.

1
Number of proofs after applying the second selection criteria of maximum 150 positives or 100 initial

clauses
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To evaluate the e�ect of di�erent datasets on the model’s performance, the network
was trained on both Clauseweight and Auto208. The results are presented in the fol-
lowing section 4.3.

Folder No. Files FIFO Clauseweight Auto208

COL 239 95 129 169
FLD 281 40 90 126
GRP 982 252 489 805
KLE 241 26 62 160
LCL 884 135 294 481
LDA 50 4 6 6
NLP 516 8 39 40
NUM 933 77 284 480
PRO 72 0 27 41
REL 220 9 77 124
RNG 263 25 71 181
ROB 45 9 14 20
SET 1268 144 441 632

Total 5994 824 2023 3265

Table 1: The selected dataset consists of approximately 6000 examples from 13 di�erent
domains of the TPTP dataset [71]. Proof attempts in E [60, 61] were performed
with the heuristic settings FIFO, Clauseweight and Auto208. The hybrid ap-
proach significantly outperforms the other two heuristics finding a proof for
more than 50% of all examples. The fewest proofs can be deducted with FIFO
only achieving a result of 14%.

4.2. Network implementation in TensorFlow
The following section describes various implementation details of the network architec-
ture. First, the training process is reviewed focusing on the batch processing and applied
regularization techniques like data augmentation and normalization. In the second part,
the integration of deep learning heuristics in E [60, 61] are explained and parameter
settings discussed.

4.2.1. Training

The network is trained on a NVIDIA TitanX Maxwell GPU with 12GB RAM and
implemented in the framework TensorFlow [1] using the programming language Python.
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A training batch consists of 6 proofs that contain 8 positive and 24 negative examples
to align with the dataset distribution. In combination with the adjusted loss function
introduced in section 3.3.2 we can still ensure that the lowest loss for a random prediction
is close to 0.5 and so the decision is not biased, although much more negative than
positive examples are trained. In order to process a batch e�ciently, every embedded
clause needs to have the same size. Therefore, smaller clauses are padded with a default
symbol that is solely used for this purpose. Before the max pooling over channels takes
place, the padded symbols are removed so that only the features of the original clause
are taken into account. After this step, all clauses consist of 1024 features independent
to their size. However, the clause sizes are limited to a maximum of 120 symbols because
otherwise the memory usage strongly varies and a smaller batch must be chosen. As
only a small proportion of the examples are larger than 120 (less than 1%), the loss of
information can be neglected here.

To gain the knowledge base of the LSTM as described in section 3.2.2, the initial
clauses need to be embedded as well. Therefore, a subset of 32 initial clauses is appended
to every proof that is processed by the embedding network along to the positive and
negative examples but is used as an input for the LSTM. The amount is chosen based
on the fact that over 90% of all proof examples have equal or less than 32 initial clauses.
If a proof includes more than 32, then a randomly selected subset is extracted and used
for the current batch. For proofs with less initial clauses, random inputs are added
at the end of a batch, but only the final state after the last original clause is used,
and further iterations of the LSTM are ignored. To improve the generalization of the
knowledge base extraction, the final state is computed several times for the same proof
but with a di�erent, randomly shu�ed order of the embedded initial clauses. The
resulting knowledge bases are spread over the clauses to be evaluated so that in case
of 8 di�erent shu�es, each di�erent state is used for one positive and three negative
examples. The computational e�ort does not significantly increase as the LSTM runs
with a small batch size (proofs ◊ shu�es) and has very few layers with fewer features
compared to the embedding network.

Another factor that can greatly influence the networks’ performance is regularization
[17, 33, 52]. Regularization can be defined as “any modification we make to a learning
algorithm that is intended to reduce its generalization error but not its training error”
[17, p. 117]. There are multiple methods to do this, and one of the most important is
data augmentation. If the dataset is quite small which is the case especially for posi-
tive examples here, the network can easily overfit so that it has a high accuracy on the
training data but does not generalize and perform poorly on the test data. To prevent
this, the data can be slightly alternated without losing the important information, also
called data augmentation. In the context of first-order logic, the literals in a disjunction
can be permutated by using the symmetry axiom and also the terms of an equality
as defined in equation 2.1. Moreover, variables can be alternated as well because a
variable constitutes a quantifier ’x and the name of the variable is irrelevant. How-
ever, it is important that all variables with the same name are changed the same way,
as (odd(X) æ even(add(X, 1))) ”ƒ (odd(X) æ even(add(Y, 1))). To ensure that the
network can distinguish between di�erent vocab and extract important terms/literals
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based on initial clauses, random clauses with di�erent vocabs are generated and trained
as negative. As these examples are easy to learn a low probability of 2% is used that a
negative example is randomly generated instead of using it from the dataset.

Next to data augmentation, the weights of the network need to be regularized as well.
One approach for that is dropout [69]. The idea is to set the output of some neurons
randomly to zero. The network is forced to learn the same features over di�erent neurons
so that a better generalization emerges and the risk of overfitting falls. In addition, to
limit the weight and output values (optimum of sigmoid input is +/- infinity), a small
Mean Squared Error loss of MSE = 2 ú 10≠6 ú qn

i=1(w2
i ≠ 0) is added to the overall

training loss. Advanced regularization methods like Batch Normalization [26] or Layer
Normalization [5] are, due to lack of memory, only possible with much smaller batch
sizes that reduce the generalization again. Experiments with Self-Normalizing Linear
Units (SELU) [30] instead of ReLU seem to have a negative e�ect as the network does
not convert anymore and the accuracy is much lower. However, the network is not
stable during training, also when using all techniques as described. When analyzing
the gradient backflow, the negated conjecture has 32 times higher gradients than the
clauses to be evaluated as it is the same for the whole proof. Therefore, the gradients
of the negated conjecture are manually weighted down by the factor of 16, and also the
gradients of the vocab are reduced by 32. This results in a much more stable training
and gains greater accuracy.

4.2.2. Inference

To use a network as clause selection heuristic in E [60, 61], the training network architec-
ture is alternated so that the feature vector of the negated conjecture and the knowledge
base of the initial clauses can be extracted at the beginning of the proof search. For
later clause evaluations, these features are fed back into the network. This reduces the
computational e�ort to a minimum and removes redundant operations. As a second
step, the graph and the trained weights are frozen. Freezing means that the network is
exported and can be loaded as a black box where only the required inputs and outputs
need to be specified. After freezing, the network file can simply be imported into E using
the C-API of TensorFlow [1].

Processing every clause separate takes much more time than gathering multiple clauses
and process them together as a batch. The reason for this is that the architecture of a
GPU as a SIMD processor (single instruction multiple data) is optimized to process a
significant amount of data in parallel and not sequentially [1, 53]. Therefore, the clause
evaluation in E is alternated to a batch processing where all newly generated clauses
of one DISCOUNT loop iteration are collected first and then evaluated in parallel. As
the deep learning heuristic takes several milliseconds to compute for every batch, the
network evaluation could also be done asynchronously to the proof search. However, this
can cause the network to be many steps delayed to the ATP so that a clause is selected
although there could be a better choice in the remaining, not yet evaluated clauses.

When the network is frozen, a fix batch size has to be specified. With a small batch
size, the network can adjust the computational e�ort to the number of clauses the best
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and has, therefore, less overhead. In contrast, a great batch size has the advantage of a
faster evaluation per clause but might process additional clauses as well if the number
of clauses is not a multiple of the batch size. During the proof search, the number of
generated clauses per iteration greatly deviates from 0 up to more than 2000 so that
sometimes great batch sizes of 128 or similar are more e�cient and sometimes smaller of
16 or 32. Figure 18 evaluates the average runtime per clause for networks with di�erent
batch sizes. If the full batch size can be exploited, the minimum runtime is achieved
with 128 clauses per batch. Larger batches seem to exceed the GPU memory so that
the runtime slightly increases again. However, as mentioned before, if the number of
clauses is not a multiple of the batch size, only a subset of the processed clauses can be
used. The computational overhead is determined by recording the number of processed
clauses for several di�erent proof searches, and comparing it to the batch size. For
256, the overhead was more than 30%, so that the e�ective runtime per clause rises to
0.54ms. The fastest evaluation is achieved for a batch size of 128 with an average runtime
of 0.46ms per clause, although the computational overhead is about 15%. Nevertheless,
to not waste computation time and use this overhead e�ciently, free spots are filled up
with di�erent augmentations of original clauses of the batch. The evaluation of a clause
arises from the average of all its variations preventing random false classifications.
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Figure 18: The diagram summarizes the average runtime needed to evaluate a clause
when using a certain batch size on a NVIDIA TitanX Maxwell GPU. The dark
blue columns visualize the case that all clauses in a batch need to be evaluated.
In contrast, examples of numbers of clauses that need to be processed per
step are used to evaluate the e�ective runtime, presented by the light blue
columns. Overall, a batch size of 128 constitutes the minimal e�ective runtime
of 0.46ms per clause.

4.3. Experimental results
This section presents experimental results of the deep learning heuristic by examining
two tasks: Is the network able to determine if a clause is useful for a proof or not
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for unseen problems which are solved by classic heuristics like in the training dataset?
Moreover, can the approach find new proofs for problems that are not solved by heuristics
yet? Therefore, the first paragraph compares the accuracy of models trained on di�erent
datasets. The second subsection discusses the results on new, unsolved proofs.

4.3.1. Accuracy on test data

The trained networks are tested on selected positive and negative examples that were not
used for training. The performance is examined on all examples of a proof to simulate
a full proof search without using E. Thus, the corresponding dataset consists of 11
proofs (FLD010-1, GRP001-4, GRP018-1, GRP150-1, KLE144+1, LCL110-2, LDA007-
2, NUM559+1, RNG090+1, SET840-2, SET602+4) including 296 positive and 1659
negative examples. The network calculates a score for each clause and the prediction is
classified as positive, if the evaluation is lower than 0.5, and negative otherwise. The
accuracy of a classifier for a certain class c is defined as [17]:

ACCc = TPc + TNc

TPc + TNc + FPc + FNc
(4.1)

where TP (true positives) is the number of examples that are correctly classified as
this class, TN (true negatives) the examples that are correctly classified as not this class,
FP (false positive) the examples that are falsely classified as this class, and FN (false
negatives) the examples that are falsely classified as not this class. As the task of clause
selection only has the two categories “useful” (0) and “not useful” (1), the FN of one
class is the FP of the other class, and similar for TP and TN. Thus, the average accuracy
of both classes can be simplified to:

ACCavg = TP0 + TP1
P0 + P1

(4.2)

with Pc as the number of positive examples for class c. Since the test dataset is
reasonably biased towards negative examples, the overall accuracy is the average of both
classes normalized. This constitutes a 50-50% split of negative and positive examples,
as used in [39].

Table 2 shows the results for the network architecture presented in section 3. Three
datasets were used for training that di�er in the heuristic and example settings. The
first one was solely trained on examples generated by using clauseweight as heuristic in
E. The accuracy exceeds the baseline of the CNN and WaveNet from [39], especially for
positive clauses. However, the accuracies cannot be compared in detail because both
networks from [39] were trained on a di�erent dataset (Mizar [19]) and, thus, tested on
di�erent proofs.

When applying the first model for proof search, many wrong clauses are selected so
that even proofs on which the network was trained are solved slower. The problem is
that the network has only seen clauses that the heuristic has selected in the training
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Network/Dataset Accuracy
Positive

Accuracy
Negative

Accuracy
overall

Auto - CNN [39] - - 80.3%
Auto - WaveNet [39] - - 81.5%
Clauseweight 86.4% 81.8% 84.1%
Clauseweight with Unprocessed 88.7% 85.3% 87.0%
Auto208 with Unprocessed 92.6% 89.2% 90.9%

Table 2: The CNN and WaveNet architecture by [39] achieved an accuracy of 80% to
81.5% on a 50-50% split of positive and negative examples of the Mizar dataset.
The presented network of section 3 is evaluated on unseen examples of the gener-
ated TPTP dataset trained on either the results of the heuristic “clauseweight”
or “auto208”. The best model reaches an accuracy of 90.9% reducing the error
by almost half.

dataset. Clauses that stay unprocessed for the whole proof are ignored since [39] has
reported that learning these as negatives reduces the performance. However, during
inference, the network evaluates such clauses and might falsely classify them as useful.
Therefore, a second model is trained with unprocessed clauses included as negative. The
test dataset is not updated with unprocessed clauses as this would manipulate the results
and For the network in this project, the accuracy is improved by using this dataset for
training. Especially the performance on negative clauses rises by 3.5% resulting in an
overall accuracy of 87.0%.

As discussed in section 4.1.2, most example proofs were generated by using the
Auto208 heuristic in E. Therefore, a third model was trained on this dataset includ-
ing unprocessed examples. This configuration outperforms the previous ones by about
4% in accuracy for both negative and positive examples resulting in 90.9% correct clas-
sifications. The error rate is reduced by almost half compared to the best model of
[39].

Nevertheless, even if the high accuracy seems impressive, the performance has to
be interpreted in the context of proof deduction. Recognizing over 90% of all positive
clauses might be enough when using it in combination with other heuristics like Auto208.
The proportion of correct classified negatives is the greater problem. When processing a
clause, up to 2000 and more new clauses are generated. As most proofs consists of less
than 100 positive clauses, most of the generated ones are not useful. If 90% of them are
correctly classified, the network still suggests approximately 200 of these to be useful and
should be processed next. The few correctly positive clauses might never be selected,
because some examples are processed before them and generate many more clauses that
are placed in the queue in front of them again.

This theoretical view on applying the heuristic might conclude that the accuracy on
negative clauses have to be sharply increased. However, the accuracy only constitutes
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the number of clauses with an weight of more or less than 0.5. If the positive clauses
have a much lower score than the false classified ones, the performance might still be
su�cient. Therefore, the next section discusses the results when actually applying a
trained model as a clause heuristic in E.

4.3.2. Proof search in E

As proposed in [39], a switched approach with network guidance at the beginning and
auto heuristic afterwards is implemented in E. The first phase has a hybrid heuristic
with a frequency of 20 for the deep learning algorithm and 1 for each other heuristic
of Auto208. So, the network guidance dominates but still little impacts can be given
by the classic heuristics. After 20 minutes, the frequencies are alternated to 2 for the
network and to the standard values of Auto208 for the other heuristics. During the
second phase, no new generated clauses are processed by the neural network and the
evaluations for these are set to 1 (maximum of not useful). Still, the clauses that were
already evaluated are used and processed in their priority order for the network heuristic
as the evaluations might still be valuable.

First, the network guidance was tested on the dataset on which the accuracy of the
model was determined in section 4.3.1. All of the eleven proofs were solved by the
network trained on the auto heuristic dataset in the time limit of 30 minutes and about
two thirds when solely applying the deep learning heuristic. However, the model trained
without unprocessed clauses was only able to solve the problem NUM559+1 when using
purely network guidance although its accuracy on the test dataset was about 84%. This
underlines the relevance of unprocessed clauses in the training process for the future
application.

For testing the models on new problems for which none heuristic could find a proof,
the following 25 files were randomly selected:

• Domain “Field Theory” (FLD): FLD082-1 and FLD085-3

• Domain “Group Theory” (GRP): GRP124-1, GRP207-1 and GRP781-1

• Domain “Left Distributive Algebra” (LDA): LDA005-1, LDA015-1, LDA025-1 and
LDA026-1

• Domain “Processes” (PRO): PRO003+1, PRO004+1, PRO007+2 and PRO014+1

• Domain “Relation Algebra” (REL): REL019+2, REL029+4, REL029-2, REL039+1
and REL053+1

• Domain “Robbins Algebra” (ROB): ROB007-3, ROB012-1, ROB032-1 and ROB033-
1

• Domain “Set Theory” (SET): SET069+1, SET652+3 and SET993+1
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The model of the clauseweight dataset had no success on any of the problems, even
when including unprocessed clauses in the training process. However, it was conspic-
uous that the network often selected clauses that contain a part of a di�erent positive
clause. For example, in case of the problem SET652+3, the clause subset(X1,X3) |
~subset(X2,X3) | ~subset(X1,X2) was selected as a positive clause. As a result, sim-
ilar clauses like subset(X1,X2) | ~subset(X1,X3) | ~subset(X4,X2) |
~subset(X3,X4) and subset(X1,X2) | ~subset(X1,X3) | ~subset(X3,X4) |
~subset(X5,X2) | ~subset(X4,X5) with increasing size (up to 12 literals) were se-
lected as well. The problem is that the network architecture is based on a convolutional
model and only has a local view although the receptive field is greatly increased by the
dilated convolutions. The final features of a symbol therefore depend on a part of a
clause and not all of it. Moreover, the max pooling over channels basically ignores sym-
bols that have small feature values. The network might represent unnecessary parts with
low features as they are not so relevant for the evaluation, but also whole literals can be
cut out due to the max pooling. Applying an extensive mining of negative examples in
the training process as described in section 3.3.1, reduces the number of such selections
as these get high losses and trained more often. However, this is a workaround and can
be e�ciently implemented in the network architecture. So, more work has to be invested
in the final feature compression to prevent this problem.

When using a model trained on the Auto208 dataset, at least one new proof can be
found. The problem file REL019+2 was solved in about 22 minutes, shortly after the
heuristic switched. All 60 clauses that were useful for the proof can be found in the
appendix A. 58 of them were selected in the network guided phase, whereas only the
last two clauses were chosen by the substantial auto heuristic. This shows that the deep
learning approach has a great impact and can on the proof search. Still, it also supports
the hypothesis that the switch approach outperform pure network guidance as the final
clauses were selected by the auto heuristic only 2 minutes after the frequencies changed.

However, the sample of 25 proof attempts that was limited by the lack of resources
with a single GPU, is not su�cient for a detailed evaluation. Proving one out of 25
can be a lucky hit, or might even be lower than the actual performance of the network.
Nevertheless, the first proof on new problems and the great accuracy of unseen proofs
demonstrate the potential of deep learning heuristics for automated theorem proving.
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5. Outlook
This project was one of the first steps integrating deep learning in automated theorem
proving. The proposed network architecture was able to correctly classify 90% of all
clauses in the test dataset whether they are likely to be useful for a proof or not. However,
applying the network as a heuristic for clause selection on new, unsolved problems, has
brought little success due to multiple reasons. Thus, there is still a lot of space for
improvement, that is discussed in this section.

First of all, the network contains many hyperparameters that have to be optimized.
The structure of a training batch regarding number of proofs, examples and initial
clauses, can significantly a�ect the network’s training process and its final performance.
In comparison to a network without a knowledge base extraction, the batches are strongly
biased as it only contains 6 di�erent negated conjectures and 192 initial clauses that
are not trained explicitly. Moreover, the learning rate and the corresponding gradient
flow is hard to control for this network, as the input vocabulary is trained as well
and the dilated dense block enables multiple backpropagation paths. The weights for
embedding the negated conjecture are trained way less than the ones for the clauses to
be evaluated because of the same conjecture for multiple examples in a batch. Reducing
the gradients for this path stabilizes the network, but might not be the optimal solution.
This drawback of the knowledge base extraction has to be examined more, but not all
experiments could be executed due to limited resources with a single GPU.

In addition, the approach of the knowledge base extraction is not fully developed. The
idea is that the network gets an overview of all initial clauses and learn dependencies.
Nevertheless, it can not be checked if the network really does that as the features are not
readable for humans and analyzing a neural network on what it has learned is mostly
hardly possible [34]. Still, if the network would learn something from the initial clauses,
its performance should improve. Therefore, the same network architecture excluding
the LSTM and the knowledge base extraction has to be trained and compared to the
current one. This experiments will demonstrate whether the intial clauses are helpful
for the network or even decrease its performance due to the constraints of the training
process.

Another constraint for a successful knowledge base extraction is that the resulting
features are independent from the chronological order in which the initial clauses are
processed. To ensure this, several di�erent sequences are computed in a training iteration
and randomly assigned to examples. However, the features might still deviate as they
are not compared with each other. Thus, an additional loss like the Kullback Leibniz
distance q

i pi log pi

qi
between feature vectors of di�erent orders has to be considered that

checks the similarity of the knowledge bases. The weight of this loss compared to the
evaluations has to optimized and constitutes a new hyperparameter. If the loss is too
high, the network might ignore the knowledge base for evaluation and computes the
same features for all proofs. On the other side, if the loss is too low, it will not e�ect
the network at all.

Not only the network architecture can be improved. Also the task of how to represent
a clause as an input to the embedding network is a key aspect. Currently, the input
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solely consists of a table lookup of features for the symbol’s name and arity. However,
clauses have a strong syntax that gets lost and has no representation in the network.
To implement the syntax and more information of a clause in the input, the following
parameters can added:

Negative literals One input that determines whether the symbol is in a negative (-1) or
positive (1) literal. This reduces the long-term dependency to the negated symbol
for large literals.

One-hot vector for the symbol depth The depth of a symbol is the number of func-
tions around it. For example, in the clause odd(add(X, 1)), odd has the depth 0,
add the depth 1, and X and 1 the depth 2. It is encoded with a one-hot vector
with a maximum value of 4 to ensure that only one depth is taken at a time. The
network can easier recognize parameters of a function, especially if the parameters
are functions as well, and parentheses might be redundant reducing the input size
a lot.

One-hot vector for the literal identity Every literal in a clause is assigned to a di�er-
ent id. For example, in the clause odd(X) ‚ even(X), both literals have di�erent
ids. This ensures that large receptive fields like the last dilated convolution in
the embedding network can still distinguish between symbols of di�erent literals.
The size of the one-hot vector is limited to for example 4 di�erent ids that do not
give any information of the literal itself but just constitutes a di�erence to the
neighbors. If the clause contains more than 4 literals, ids are repeated, but with a
maximum distance.

Clause size The size of the whole clause can also improve the input features. As the
inputs should be normalized for the best performance [17], a function with a maxi-
mum of 1 and minimum of -1 is applied to the clause size. However, as the average
length is at about 30, the function should also be close to 0 at 30 to get a greater
resolution for small clauses. A possible function is tanh(2 ú (x≠30)

(x+30) ú (1 + ( x
120)3))

as it is everywhere di�erentiable and meets the constraints above. The last factor
of (1 + ( x

120)3) increases the resolution for large clauses. The function is shown in
figure 19a.

Literal size Next to the clause, also the size of the literals might be important. There-
fore, a similar function is used to map the value between -1 and 1. Nevertheless,
the literal size and its average depends on the clause size. Thus, the function is 0
for the average literal size (clause size divided by number of literals) and its inputs
are normalized to the clause size. Figure 19b illustrates this function.

Position Next to the literal size, it is important to know at which position the symbol
is in the literal. This information can be mapped with a linear interpolation from
-1 if the symbol is the first one of the literal, and 1 for the last (see figure 19c). A
non-linear function is not needed here as the average of the interpolation is always
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0. With the symbol position, the network can orientate itself better within a literal
and improves long-term dependencies.
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Figure 19: (a) The clause size is mapped by the function tanh(2 ú (x≠30)
(x+30) ú (1 + ( x

120)3))
into a range between -1 and 1. The resolution for is for smaller values greater
as the average clause size is about 30. (b) The same function is used for the
literal size, but it is normalized to the clause size. The average length at
which the function is 0 is 1 divided by the number of literals in the clause.
(c) The position of a symbol in a literal is the interpolated value between -1
for the first symbol and 1 for the last.

Adding these twelve inputs to the input would barely help as the 512 other input
features clearly overweight. Moreover, the regularization techniques limit weights to a
certain boundary and tries to level them so that none stand out. As an alternative, a 1x1
convolution can be used to scale the twelve inputs up to 256 features which are equally
trained with the vocabulary. In addition, the network can learn to combine those inputs
and learn new features from it. This approach might help the network to understand
the syntax of a clause and lead to a better performance.

Another key aspect for the network’s performance that is easily ignored is the dataset
although it is very important as stated by many researches [34, 17, 81, 52]:

“Your neural network is only as good as the data you feed it.” [52]

In this project, proofs of the TPTP problem library [71] were generated by E [60, 61]
with di�erent heuristic settings and trained in a supervised manner. The dataset is
currently quite small as networks overfit on clausweight data after only 30.000 iterations.
One of the biggest problems might be the divergence of the di�erent domains and their
vocabulary. Many vocabs are only used in one or two domains, and amounts of examples
significantly di�er over domains so that the vocabulary is biased. The dataset would be
improved by using only one large domain with enough examples like the Mizar dataset
[19]. As another approach, to use the same vocabulary for almost every proof, a standard
vocabulary of 100 constants, 100 functions, 50 variables and more can be created, on
which he proof vocabulary is mapped dynamically. The number of vocab per type is
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determined by the maximum usage of a proof in the testing and training dataset. At
training time, the vocabulary mapping is shu�ed for every proof in a batch so that the
network learns the structure of a proof independent of its vocabulary. However, as the
name of a vocab is now irrelevant, the vocabulary is not trained anymore and initialized
it with a random distribution of -1, 0 and 1, because it can lead to a unstable training.

Nevertheless, supervised learning is still a simplification of the real environment. The
future of deep learning with automated theorem proving lays in reinforcement learning
where the network is trained on proof searches that are generated by its own selections.
Each iteration consists of a proof attempt conducted by the network, and when a proof
is found, the model is retrained on the correct and wrong choices it made. Also more
complex and stronger network architectures that actively implement planning like the
Value Iteration Network [75] can be used with reinforcement learning. This approach is
very di�cult to realize as proof attempts last several minutes and extremely slows down
the training. But only with reinforcement learning, the model is independent to other
heuristics, optimizing itself until saturation and can achieve a performance way beyond
current state-of-the-art on supervised learning.
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6. Conclusion
Automated theorem provers are computer programs that try to find formal proofs of
theorems. The hypothesis is represented as a conjecture that should be deducted from
a set of ground rules, called axioms. In first order logic, the axioms are converted
into a clause set. In combination with the negation of the conjecture, new clauses are
derived until the empty clause is generated witnessing the implication of the theorem
by the axioms, or no other non-redundant implications can be made. As there is a great
number of possible derivations, one of the key aspects in ATP is to design an algorithm
that decides when to compute which inference.

Modern automated theorem provers like Vampire [55, 32], Prover9 [43], SPASS [80]
and E [60, 61], rely on variants of the given clause algorithm, where the clause set is
divided into a processed and an unprocessed part. At each iteration, a clause from
the unprocessed set is selected and all inferences with previously processed clauses are
computed. The chronological order, in which the clauses are moved to the processed
set, is determined by a clause selection heuristic like FIFO or Clauseweight, and has a
great impact on the prover’s performance. Nevertheless, classic heuristics show moderate
success on e�cient proof searches. As deep learning has shown great improvements in
several domains like Computer Vision [33, 54], Natural Language Processing [16, 58]
and Planning [65, 75], this project deals with the development of a neural network
architecture for a clause section heuristic.

In this project, the clause to be evaluated and the negated conjecture are compressed
to a fixed sized feature vector by an embedder network. In order to do that, a vocabulary
is used to replace symbols with features, a dilated dense block is applied as principal
component and a final max pooling over features reduces the size to 1024. Afterwards, a
second model, the combiner network, computes the final evaluation of the clause based
on both feature vectors. Moreover, a knowledge base, extracted from the initial clauses
by an adjusted LSTM [22], is used as an additional input. Another focus of this work
is handling the imbalance of positive and negative examples by using extensive mining
and sampler techniques as well as an new, adapted loss function.

The network is trained in a supervised manner on proofs of a subset of the TPTP
problems library [71] generated by di�erent heuristic settings of E. Unprocessed clauses
are included as negative examples, as this seem to be crucial for later application in E. In
experiments on unseen proofs, the model has demonstrated a classification accuracy of
over 90% clearly outperforming current state-of-the-art architecture proposed by [4, 39].
Nevertheless, when applying the network as clause selection heuristics on problems that
could not be previously solved by classic heuristics, the network guidance shows moderate
success with only one newly solved proof out of a sample of 25 problems. Although the
results are not as good as expected, the great accuracy show the potential of deep
learning algorithms for heuristics.

However, many open challenges regarding the network architecture, data handling and
training methods remain that are future steps to aim creating a deep learning clause
selection heuristic beyond state of the art.
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A. Network guided proof example

A. Network guided proof example
Here, the full proof for the problem REL019+2 of the TPTP library [71] found by net-
work guidance is presented. The proof attempt took about 22 minutes and consists of 60
positive and 2614 negative examples. Over 95% of positive clauses were selected during
the first phase mainly by the network guidance (highlighted in blue) while the hybrid
heuristic Auto208 is responsible for the last two clauses (highlighted in green).

cnf(c-0-34, plain, (join(X1,X2)=join(X2,X1))).

cnf(c-0-19, plain, (converse(converse(X1))=X1)).

cnf(c-0-18, plain, (composition(converse(X2),converse(X1))=converse(composition(X1,X2)))).

cnf(c-0-24, plain, (composition(X1,one)=X1)).

cnf(c-0-43, plain, (join(X1,complement(X1))=top)).

cnf(c-0-23, plain, (converse(composition(converse(X2),X1))=composition(converse(X1),X2))).

cnf(c-0-29, plain, (composition(converse(one),X1)=X1)).

cnf(c-0-33, plain, (join(composition(converse(X1),complement(composition(X1,X2))),complement(X2))=complement(X2))).

cnf(c-0-42, plain, (complement(join(complement(X1),complement(complement(X1))))=zero)).

cnf(c-0-35, plain, (converse(one)=one)).

cnf(c-0-41, plain, (composition(one,X1)=X1)).

cnf(c-0-46, plain, (join(complement(X1),complement(X1))=complement(X1))).

cnf(c-0-50, plain, (join(zero,zero)=zero)).

cnf(c-0-108, negatedconjecture, (composition(complement(join(complement(esk10),complement(esk20))),top)!=

complement(join(complement(esk10),complement(esk20))))).

cnf(c-0-49, plain, (join(join(X1,X2),X3)=join(X1,join(X2,X3)))).

cnf(c-0-52, plain, (join(zero,join(zero,X1))=join(zero,X1))).

cnf(c-0-48, plain, (join(complement(join(complement(X1),complement(X2))),complement(join(complement(X1),X2)))=X1)).

cnf(c-0-53, plain, (join(zero,complement(complement(X1)))=X1)).

cnf(c-0-54, plain, (join(zero,X1)=X1)).

cnf(c-0-95, negatedconjecture, (composition(esk10,top)=esk10)).

cnf(c-0-90, negatedconjecture, (composition(esk20,top)=esk20)).

cnf(c-0-55, plain, (complement(complement(X1))=X1)).

cnf(c-0-63, plain, (join(converse(X1),converse(X2))=converse(join(X1,X2)))).

cnf(c-0-56, plain, (join(X1,X1)=X1)).

cnf(c-0-57, plain, (join(X1,join(X1,X2))=join(X1,X2))).

cnf(c-0-59, plain, (join(X1,top)=top)).

cnf(c-0-62, plain, (join(top,X1)=top)).

cnf(c-0-61, plain, (join(X1,join(complement(X1),X2))=join(top,X2))).

cnf(c-0-88, plain, (join(composition(X1,X3),composition(X2,X3))=composition(join(X1,X2),X3))).

cnf(c-0-91, plain, (join(X1,composition(X2,X1))=composition(join(one,X2),X1))).

cnf(c-0-64, plain, (join(complement(join(complement(X1),X2)),complement(join(complement(X2),complement(X1))))=X1)).

cnf(c-0-67, plain, (complement(join(complement(X1),complement(join(X1,X2))))=X1)).

cnf(c-0-93, plain, (converse(composition(X2,converse(X1)))=composition(X1,converse(X2)))).

cnf(c-0-69, plain, (join(complement(X1),complement(join(X1,X2)))=complement(X1))).

cnf(c-0-71, plain, (join(complement(X1),complement(join(X2,X1)))=complement(X1))).
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cnf(c-0-73, plain, (join(X2,complement(composition(converse(X1),complement(composition(X1,X2)))))=

complement(composition(converse(X1),complement(composition(X1,X2)))))).

cnf(c-0-75, plain, (join(composition(converse(X2),complement(composition(X2,complement(X1)))),

complement(join(complement(X1),composition(converse(X2),complement(composition(X2,complement(X1)))))))=X1)).

cnf(c-0-66, plain, (converse(join(converse(X1),X2))=join(X1,converse(X2)))).

cnf(c-0-68, plain, (join(X1,converse(complement(converse(X1))))=converse(top))).

cnf(c-0-70, plain, (converse(top)=top)).

cnf(c-0-72, plain, (join(X1,converse(complement(converse(X1))))=top)).

cnf(c-0-74, plain, (complement(join(complement(X1),complement(converse(complement(converse(complement(X1)))))))=X1)).

cnf(c-0-76, plain, (complement(join(X1,complement(converse(complement(converse(X1))))))=complement(X1))).

cnf(c-0-79, plain, (join(complement(X1),converse(complement(converse(X1))))=converse(complement(converse(X1))))).

cnf(c-0-77, plain, (join(X2,complement(converse(complement(converse(X2)))))=X2)).

cnf(c-0-78, plain, (join(X1,converse(complement(converse(complement(X1)))))=X1)).

cnf(c-0-82, plain, (converse(complement(converse(X1)))=complement(X1))).

cnf(c-0-86, plain, (complement(converse(X1))=converse(complement(X1)))).

cnf(c-0-85, plain, (join(complement(converse(X1)),composition(X2,complement(converse(composition(X1,X2)))))=

complement(converse(X1)))).

cnf(c-0-105, plain, (join(complement(X1),composition(complement(composition(X1,X2)),converse(X2)))=complement(X1))).

cnf(c-0-94, negatedconjecture, (composition(top,converse(complement(esk20)))=converse(complement(esk20)))).

cnf(c-0-96, negatedconjecture, (composition(complement(esk20),top)=complement(esk20))).

cnf(c-0-97, negatedconjecture, (composition(top,converse(complement(esk10)))=converse(complement(esk10)))).

cnf(c-0-102, negatedconjecture, (composition(complement(esk10),top)=complement(esk10))).

cnf(c-0-98, plain, (converse(join(X1,composition(converse(X2),X3)))=join(converse(X1),composition(converse(X3),X2)))).

cnf(c-0-99, plain, (join(converse(composition(X2,X1)),composition(X3,converse(X2)))=

composition(join(converse(X1),X3),converse(X2)))).

cnf(c-0-103, plain, (join(composition(X1,X2),composition(X1,X3))=composition(X1,join(X2,X3)))).

cnf(c-0-107, plain, (join(X1,composition(X1,X2))=composition(X1,join(one,X2)))).

cnf(c-0-101, negatedconjecture, (join(complement(esk20),composition(X1,top))=

composition(join(complement(esk20),X1),top))).

cnf(c-0-106, negatedconjecture, (composition(join(complement(esk10),complement(esk20)),top)=

join(complement(esk10),complement(esk20)))).

56


	Introduction
	Motivation
	Proposed Approach
	Outline

	Foundations
	First-Order Theorem Proving
	E Prover
	Machine Learning
	Artificial Neural Networks
	Recurrent Neural Networks
	Related work

	Network model
	General concept
	Network architecture
	Performance Measurement

	Experiments
	Dataset
	Network implementation in TensorFlow
	Experimental results

	Outlook
	Conclusion
	Network guided proof example

