
Deep Reasoning
Hardware Accelerated Artificial Intelligence
Phillip Lippe, Stephan Schulz

Vocab

General architecture
➤ Determining a score between 0 (useful for the proof) and 1 (not useful) for each

clause separately which is not changed during the proof search

➤ Every clause is evaluated regarding the conjecture to be proved (second input)

➤ Possible proofs limited to initial clauses ⇒ third input for evaluation

➤ Balance between accuracy/complexity and computation time of network

Clause
➤ First-order clauses to be evaluated
➤ Example: prod(a, inv(a)) = identity

Negated conjecture
➤ Conjecture to be proved
➤ Example: prod(X, identity) = X

Results and Outlook
➤ Approach tested on TPTP problem library with limited vocabulary

➤ Implemented in TensorFlow and integrated in the E-Prover (single GPU TitanX)

➤ Network could correctly classify 92.6% of all positive and 89.2% of all negative

clauses from test dataset, but lacking in finding new proofs (only 1 out of 25)

➤ Problems to tackle in the future: partwise useful clauses | integrating

proof/clause structure into network | reinforcement learning on own proofs

Embedding network

➤ Goal: compress an arbitrary clause into a fixed size feature vector

➤ Complexity is constrained by the runtime performance

➤ Principal component: 5-layer dense block with increasing dilation

➤ Processing clauses with different fields of view

➤ Features from all previous layers are combined as input

➤ Final max-pooling over features guarantee fixed size feature vector

Motivation
➤ Traditionally, search heuristics for theorem provers are hand-coded

➤ Problem: inefficient and not always getting optimal results

➤ Deep learning has shown great success in various domains for recognizing

patterns and analysis of complex structures ⇒ applying for search heuristics

➤ Learning from existing proofs to distinguish useful and distracting selections

Vocabulary

➤ Goal: Convert clauses to representation suitable for NNs

➤ Every symbol is assigned to a feature vector

➤ Part of features is shared among similar symbols

➤ Feature vectors are learned during training

➤ Shared vocabulary for negated conjecture and clauses

Clause

Vocabulary

prod(X,inv(X))=identity Symbol embeddingShape: 10×256

Symbol names

Symbol types

Shape: 10×256

||

Shape: 10×512
Constant

Special symbol (parantheses,...)

Function with arity 2

Variable

Function with arity 1

prod (a inv (a)) = id.

Performance measurement
➤ Testing proof deduction is expensive and not practicable during training

➤ Existing proofs create significantly imbalanced dataset (useful vs not useful, …)

➤ Applying extensive data augmentation and sampling based on loss

➤ Loss function: L(p) =
(
�↵1 · log

⇣
1+p·(e�1)

e

⌘
· (1� p)� for y = 1

�↵0 · log (1� p) · p� for y = 0

Combiner network

➤ Goal: combine the features to predict a heuristic score

➤ Applying fully connected (FC) layers as feature sizes are fixed

➤ After first layer, the features of the initial clauses are combined

by using a modified LSTM block ⇒ additional input to clauses

➤ Last layer compresses features to single value between 0 and 1

σ tanh

x

+

σ

x

||

xt

ht+1ht

tanh

