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Abstract

Learning the structure of a causal graphical model
using both observational and interventional data
is a fundamental problem in many scientific fields.
A promising direction is continuous optimization
for score-based methods, which efficiently learns
the causal graph in a data-driven manner. How-
ever, to date, those methods require constrained
optimization to enforce acyclicity or lack conver-
gence guarantees. In this paper, we present ENCO,
an efficient structure learning method for directed,
acyclic causal graphs leveraging observational and
interventional data. ENCO formulates the graph
search as an optimization of independent edge like-
lihoods, with the edge orientation being modeled
as a separate parameter. Consequently, we can pro-
vide convergence guarantees of ENCO under mild
conditions without constraining the score function
with respect to acyclicity. In experiments, we show
that ENCO can efficiently recover graphs with hun-
dreds of nodes, an order of magnitude larger than
what was previously possible.

1 INTRODUCTION

Uncovering and understanding causal mechanisms is an im-
portant problem not only in machine learning [Bengio et al.,
2019, Pearl, 2009, Schölkopf et al., 2021] but also in various
scientific disciplines such as computational biology [Fried-
man et al., 2000, Sachs et al., 2005], epidemiology [Robins
et al., 2000, Vandenbroucke et al., 2016], and economics
[Hicks et al., 1980, Pearl, 2009]. A common task of interest
is causal structure learning [Pearl, 2009, Peters et al., 2017]
which aims at learning a directed acyclic graph (DAG) in
which edges represent causal relations between variables.

*Qualcomm AI Research in an initiative of Qualcomm Tech-
nologies, Inc.

While observational data alone is in general not sufficient to
identify the DAG [Hauser and Bühlmann, 2012, Yang et al.,
2018], interventional data can improve identifiability up to
finding the exact graph [Eberhardt, 2008, Eberhardt et al.,
2005]. With recent advances in gene editing technologies
providing large amounts of interventional gene expression
data [Dixit et al., 2016, Macosko et al., 2015], there is a
need for algorithms that can perform structure learning for
graphs with several hundreds of nodes.

Finding the right DAG is challenging as the solution space
grows super-exponentially with the number of variables. A
promising new direction are continuous-optimization meth-
ods [Bengio et al., 2019, Brouillard et al., 2020, Ke et al.,
2019, Yu et al., 2019, Zheng et al., 2018, 2020, Zhu et al.,
2020] that are more computationally efficient than previ-
ous score-based and constraint-based methods [Guo et al.,
2020, Peters et al., 2017] by leveraging the expressiveness
of neural networks as function approximators. To restrict the
search space to acyclic graphs, Zheng et al. [2018] proposed
to view the search as a constrained optimization problem
using an augmented Lagrangian procedure to solve it. Sev-
eral follow-up works improved the process [Brouillard et al.,
2020, Yu et al., 2019, Zheng et al., 2020]. An alternative ap-
proach is the usage of a regularizer in the learning objective
that penalizes cyclic graphs and is simpler to optimize [Ke
et al., 2019, Zhu et al., 2020]. Nonetheless, methods with
such regularizers commonly lack guarantees for converging
to the correct causal graph. To date, continuous optimization
methods do not scale well to more than 50 variables due to a
discrete search space and difficulties in enforcing acyclicity.

In this work, we show that with suitable interventional data,
we do not need to limit the search space to DAGs in the first
place. Instead, by modeling the orientation of an edge as a
separate parameter, the optimization of a likelihood-based
objective already converges to the correct, acyclic graph.
The parameterization of edge orientations allows us to de-
rive low-variance gradient estimators for the discrete search
space and give convergence guarantees under mild condi-
tions. We call this method ENCO, Efficient Neural Causal

Accepted for the 8th Causal Inference Workshop at UAI 2021.

mailto:<p.lippe@uva.nl>?Subject=UAI 2021 Causality Workshop - Efficient Neural Causal Discovery


NN        

NN        

NN        

X1

X3

X2

Distribution fitting

X Y

Z

NN

NN

NN

X

Z

Y

Alternate between
both steps

Distribution fitting Graph fitting

𝑝(𝑋!|…)

𝑝(𝑋"|… )

𝑝(𝑋#|… )

X1 X2

X3

NN1

NN2

NN3

X1

X3

X2

Alternate between
both steps

Distribution fitting Graph fitting

𝛾!"

𝛾"!

𝜃!" 𝜃#"

𝜃!#
𝛾!#

𝛾#!

𝛾#"

𝛾"#

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj) � LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2
(X2)

LX1 6!X2(X2)

LX3!X2
(X2)

LX3 6!X2
(X2)

LX1!X3
(X3)

LX1 6!X3(X3)

LX2!X3
(X3)

LX2 6!X3
(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2) � LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2

(X2) � LX3 6!X2
(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3

(X3) � LX1 6!X3
(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3

(X3) � LX2 6!X3
(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2) � LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3

(X3) � LX1 6!X3
(X3)]

f�1

f�2

f�3

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj) � LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2
(X2)

LX1 6!X2(X2)

LX3!X2
(X2)

LX3 6!X2
(X2)

LX1!X3
(X3)

LX1 6!X3(X3)

LX2!X3
(X3)

LX2 6!X3
(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2) � LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2

(X2) � LX3 6!X2
(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3

(X3) � LX1 6!X3
(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3

(X3) � LX2 6!X3
(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2) � LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3

(X3) � LX1 6!X3
(X3)]

f�1

f�2

f�3

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj) � LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2
(X2)

LX1 6!X2(X2)

LX3!X2
(X2)

LX3 6!X2
(X2)

LX1!X3
(X3)

LX1 6!X3(X3)

LX2!X3
(X3)

LX2 6!X3
(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2) � LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2

(X2) � LX3 6!X2
(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3

(X3) � LX1 6!X3
(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3

(X3) � LX2 6!X3
(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2) � LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3

(X3) � LX1 6!X3
(X3)]

f�1

f�2

f�3

1

X1 X2

X3

NN1

NN2

NN3

X1

X3

X2

Alternate between
both steps

Distribution fitting Graph fitting

Figure 1: Visualization of the two training stages of ENCO, distribution fitting and graph fitting, on an example graph with 3
variables (X1, X2, X3). The graph on right further shows how the parameters γ and θ correspond to edge probabilities. We
learn the parameters by comparing multiple graph samples on their generalization from observational to interventional data.

Discovery. In experiments, we show that ENCO handles
various graph settings well, and even recovers graphs with
up to 1,000 nodes in less than nine hours of compute using
a single GPU (NVIDIA RTX3090) while having less than
one mistake on average out of 1 million possible edges.

2 EFFICIENT NEURAL CAUSAL
DISCOVERY

2.1 SCOPE AND ASSUMPTIONS

We consider the task of finding a directed acyclic graph
G = (V,E) of an unknown causal graphical model (CGM)
given observational and interventional samples. We start
by assuming that the CGM is causally sufficient, i.e., all
common causes of variables are included in the DAG and
observable. In the following, however, we also discuss ex-
tensions for inferring the causal mechanisms in graphs with
latent confounding causal variables. We emphasize that we
place no constraints on the domains of the variables: they
can be discrete, continuous, or mixed.

The scope with respect to the interventions closely follows
Ke et al. [2019]. The interventional data is created via sparse
interventions that only affect a single variable, and are re-
tracted before the next intervention is performed. Further-
more, we consider that interventions are perfect, that is, the
new variable distribution is independent of the parents. We
consider that interventions have been performed for every
variable and samples from it including the intervention tar-
get are provided. Last, we emphasize that we do not require
specific distributions in the interventions.

2.2 LEARNING THE CAUSAL GRAPH

To learn a causal graph from observational and interven-
tional data, ENCO models a probability for every possible
directed edge between pairs of variables. The goal is to op-
timize these probabilities such that all edges in the ground
truth graph converge to one, and all others to zero. The

optimization exploits the idea of independent causal mech-
anisms [Pearl, 2009, Peters et al., 2016, Schölkopf et al.,
2012]: we search for the graph which generalizes best from
observational to interventional data. In the ground-truth
causal graph, the conditional distributions for all variables
stay invariant under an intervention except the intervened
ones. Meanwhile, this does not hold for graphs that model
the same distribution but with a flipped, missing or addi-
tional edge [Peters et al., 2016]. To implement this optimiza-
tion, we alternate between two learning stages visualized in
Figure 1: distribution fitting and graph fitting.

Distribution fitting trains a neural network fφi
per vari-

able Xi to model its observational, conditional data dis-
tribution p(Xi|...). The input to the network are all other
variables,X−i, but we apply a dropout-like scheme to the
input for simulating different sets of parents. Specifically,
during training, we randomly set an input variable Xj to
zero based on the probability of its corresponding edge
Xj → Xi. Similar techniques have been used by previous
works [Brouillard et al., 2020, Ivanov et al., 2019, Ke et al.,
2019, Li et al., 2020, Yoon et al., 2018]. The training can be
summarized as the following optimization problem:

min
φi

EXEM [− log fφi(Xi;M−i �X−i)] (1)

where Mj ∼ Ber(p(Xj → Xi)). If Xi is a categorical
random variable, we apply a softmax as output activation
function of fφi

. For continuous cases, a Normalizing Flow
[Rezende and Mohamed, 2015] can be used for fφi

.

Graph fitting uses the learned networks and interventional
data to score and compare different graphs. For parameter-
izing the edge probabilities, we use two sets of parameters:
γ ∈ RN×N represents the existence of edges in a graph,
and θ ∈ RN×N the orientation of the edges. The likelihood
of an edge is determined by p(Xi → Xj) = σ(γij) ·σ(θij),
with σ(...) being the sigmoid function and θij = −θji. The
probability of the two orientations always sum to one. The
benefit of separating the edge probabilities into two inde-
pendent parameters γ and θ is that it gives us more control
over the gradient updates. The existence of an (undirected)
edge can usually be already learned from observational or
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arbitrary interventional data alone, excluding deterministic
variables [Pearl, 2009]. In contrast, the orientation can only
be reliably detected from data for which an intervention is
performed on its adjacent nodes, i.e. Xi or Xj for learning
θij . While other interventions eventually provide informa-
tion on the edge direction, e.g., intervening on a node Xk

which is a child of Xi and a parent of Xj , we do not know
the relation of Xk to Xi and Xj at this stage, as we are
in the process of learning the structure. Hence, only the
interventions on Xi or Xj reliably uncover the orientation
θij . Despite having just one variable for the orientation, γij
and γji are learned as two independent parameters. This
is because on interventional data, an edge can improve the
log-likelihood estimate in one direction, but not necessarily
the other as well leading to conflicting gradients.

The objective function we use for optimizing the graph
parameters γ and θ is written as:

L̃ =EÎ∼pI(I)Ep̃Î(X)Epγ,θ(C)

[
N∑

i=1

LC(Xi)

]

+ λsparse

N∑

i=1

N∑

j=1

σ(γij) · σ(θij)
(2)

where pI(I) is the distribution over which variable to inter-
vene on (usually uniform), and p̃Î(X) the joint distribution
of all variables under the intervention Î . In other words,
these two distributions represent our interventional data dis-
tribution. The distribution over adjacency matrices C under
γ,θ is denoted by pγ,θ(C) with Cij ∼ Ber(σ(γij)σ(θij)),
and LC(Xi) is the negative log-likelihood estimate of the
variable Xi conditioned on the parents according to C:
LC(Xi) = − log fφi

(Xi;C·,i � X−i). The second term
of Equation 2 represents a prior towards sparser graphs,
removing redundant edges. It is an `1-regularizer on the
edge probabilities, with the hyperparameter λsparse as reg-
ularization weight. The goal is to optimize γ and θ such
that it minimizes the objective L̃. For this, we need to deter-
mine their gradients through the expectation Epγ,θ(C) where
C is a discrete variable. For this, we apply REINFORCE
[Williams, 1992] and obtain a gradient which can be esti-
mated using Monte-Carlo sampling. Specifically, to perform
an update step on γ and θ, we sample K graph structures
from pγ,θ(C), and use the different likelihood estimates of
all variables on a batch of interventional data to determine
the gradients of the parameters.

2.3 CONVERGENCE

After training, we obtain a graph prediction by selecting
the edges for which σ(γij) and σ(θij) are greater than 0.5.
The orientation parameters prevent loops between any two
variables, since σ(θij) can only be greater than 0.5 in one
direction. Although the orientation parameters do not guar-
antee the absence of loops with more variables at any stage

of the training, we show that ENCO converges to the cor-
rect, acyclic graph under mild conditions. The proof for this
convergence contains three steps. First, for every ancestor-
descendant pair Xi, Xj , the orientation parameter θij con-
verges to σ(θij) = 1 if Xi and Xj are not conditionally
independent on interventional data. Second, every edge
Xi → Xj in the ground truth graph is learned if adding
Xi to the any parent set of Xj improves the log-likelihood
estimate by at least λsparse. Finally, all other edges will be
removed by the regularizer. We outline a sketch of the proof
in the appendix, and show an experimental verification next.

3 EXPERIMENTS

We evaluate ENCO on structure learning on synthetic
datasets for systematic comparisons. The experiments focus
on graphs with categorical variables. Categorical data is
commonly more difficult in structure learning, as regression
techniques or assumption on linear noise models cannot be
used. Yet, ENCO is also applicable on continuous data.

We compare ENCO to GIES [Hauser and Bühlmann, 2012]
and IGSP [Wang et al., 2017, Yang et al., 2018] as greedy
score-based approaches, and DCDI [Brouillard et al., 2020]
and SDI [Ke et al., 2019] as continuous optimization meth-
ods. Pure constraint-based methods do not scale well to the
given graph and dataset sizes [Guo et al., 2020, Peters et al.,
2017]. We do not compare to methods with observational
data only, since those can just recover the graph up to its
Markov equivalence class. We perform a separate hyperpa-
rameter search for all methods. Since SDI and DCDI use
neural networks to fit (observational) distributions as well,
we use the same network setup as for ENCO. All methods
were executed on the same hardware, namely a 12-core CPU
with a single NVIDIA RTX3090 GPU. Our code is publicly
available at https://github.com/phlippe/ENCO.

3.1 COMMON GRAPH STRUCTURES

We first experiment on synthetic graphs, for which we pick
six common graph structures. The graphs chain and full
represent the minimally- and maximally-connected DAGs.
bidiag is a chain with 2-hop connections, and jungle
is a tree-like graph. In the collider graph, one node
has all other nodes as parents. Finally, random has a ran-
domly sampled graph structure with a likelihood of 0.3
of two nodes being connected by a direct edge. For each
graph structure, we generate 25 graphs with 25 nodes each.
The graph generation process follows the setup of Ke et al.
[2019]. Following common practice, we use structural ham-
ming distance (SHD) as evaluation metric. SHD counts the
number of edges that need to be removed, added, or flipped
in order to obtain the ground truth graph.

We report the average performance and standard deviation

3
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Table 1: Comparing structure learning methods in terms of structural hamming distance (SHD) on common graph structures
(lower is better), averaged over 25 graphs each. In line with the theoretical guarantees, ENCO can reliably recover five out
of the six graph structures without errors.

Graph type bidiag chain collider full jungle random

GIES [Hauser and Bühlmann, 2012] 47.4 (±5.2) 22.3 (±3.5) 13.3 (±3.0) 152.7 (±12.0) 53.9 (±8.9) 86.1 (±12.0)
IGSP [Wang et al., 2017] 33.0 (±4.2) 12.0 (±1.9) 23.4 (±2.2) 264.6 (±7.4) 38.6 (±5.7) 76.3 (±7.7)
SDI [Ke et al., 2019] 2.1 (±1.5) 0.8 (±0.9) 14.7 (±4.0) 121.6 (±18.4) 1.8 (±1.6) 1.8 (±1.9)
DCDI [Brouillard et al., 2020] 3.7 (±1.5) 4.0 (±1.3) 0.0 (±0.0) 2.8 (±2.1) 1.2 (±1.5) 2.2 (±1.5)

ENCO (Ours) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.3 (±0.9) 0.0 (±0.0) 0.0 (±0.0)
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Figure 2: Evaluating SDI, DCDI, and ENCO on large graphs
in terms of SHD (lower is better). Dots represent single
experiments, lines connect the averages. DCDI ran out of
memory for 1000 nodes.

in Table 1. Overall, the continuous optimization methods
considerably outperform the greedy search approaches. SDI
works reasonably well on sparse graphs, but struggles with
nodes that have many parents. The second best is DCDI
which performs well on the collider graph since its
edges can be independently orientated. Although DCDI
converges to acyclic graphs, it predicts some incorrectly
oriented edges, while being 8 times slower than ENCO on
the same hardware. ENCO reliably learns five out of six
graph structures without errors, except of rare mistakes on
the full graph. Therefore, the theoretical guarantees also
hold in practice for small graphs.

3.2 SCALABILITY

Next, we test ENCO on graphs with large sets of vari-
ables. We create random graphs ranging from N = 100 to
N = 1, 000 nodes. Every node has on average 8 in- or out-
going edges and a maximum of 10 parents. The challenge
of large graphs is that the number of possible edges grows
quadractically and the number of DAGs super-exponentially.
Hence, efficient methods are needed.

We compare ENCO to the two best performing baselines
from Table 1, SDI [Ke et al., 2019] and DCDI [Brouillard

et al., 2020]. All methods were given the same setup of neu-
ral networks and a maximum runtime which corresponds
to 30 epochs for ENCO. We plot the SHD over graph size
and runtime in Figure 2. ENCO is capable of recovering the
causal graphs perfectly with no errors except for the 1, 000-
node graph, for which it misses one out of 1 million edges
in 2 out of 10 experiments. SDI and DCDI achieve con-
siderably worse performance. This shows that ENCO can
efficiently be applied to 1, 000 variables while maintaining
its convergence guarantees. Similar results have also been
observed on real-world inspired graphs from the Bayesian
Network Repository [Scutari, 2010] including the graphs
diabetes (413 nodes) and pigs (441 nodes).

4 CONCLUSION

In this work, we propose ENCO, an efficient structure learn-
ing method leveraging observational and interventional data.
ENCO models a graph by independent edge likelihoods with
the edge orientation as a separate parameter. As such, its
objective is unconstrained with respect to acyclicity while
providing convergence guarantees. In experiments, we show
that ENCO can be efficiently applied to graphs comprising
hundreds of nodes with a very high accuracy.

Aspects that have not been detailed in this extended abstract
include the low-variance gradient estimators used for γ and
θ. Compared to related work, this estimator has a ten times
lower standard deviation, which is crucial for learning large
graphs. Further, ENCO can be extended to handle latent
confounders which cause unique patterns in the γ-gradients.

Limitations of ENCO include the need for interventional
data on all variables. Future work includes investigating the
generalization of ENCO to incomplete intervention sets. For
instance, despite the absence of interventions, one can still
recover undirected edges via γ. A second limitation is that
the orientations are missing transitivity: if X1 � X2 and
X2 � X3, then X1 � X3 must also be true. Global order
distributions such as Plackett-Luce [Luce, 1959, Plackett,
1975] require high variance gradient estimators and strug-
gled with chains in early experiments. That said, a potential
direction is to experiment with transitive relations for im-
proving convergence speed.
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A CONVERGENCE GUARANTEES

In this section we want to give an overview of the conditions
under which ENCO is guaranteed to converge to the true,
acyclic causal graph given sufficient data and time. We first
discuss the assumptions we take for providing the guaran-
tees. Next, we discuss the gradient estimators that are used
for optimizing the graph parameters γ and θ in the graph
fitting stage. The gradient estimators are essential to the
convergence guarantees as they are unbiased with respect
to the objective L in Equation 2 and can be intuitively ex-
plained. Finally, we give a sketch of the proof under which
conditions ENCO converges to the correct graph.

A.1 ASSUMPTIONS

Assumption 1 A common assumption in causal structure
learning is that the data distribution over all variables p(X)
is Markovian and faithful with respect to the causal graph
we are trying to model. This means that the graph represents
the (conditional) independences relations between variables
in the data, and (conditional) independence relations in the
data reflect the edges in the graph. For ENCO, faithfulness
is not strictly required. This is because we work with inter-
ventional data. Instead, we rely on the Markov property and
assume that for all variables, the parent set pa(Xi) reflects
the inputs to the causal generation mechanism of Xi. This
allows us to also handle deterministic variables.

Assumption 2 For this proof, we assume that all vari-
ables of the graph are known and observable, and no latent
confounders exist. Latent confounders can introduce depen-
dencies between variables which are not reflected by the
ground truth graph solely on the observed variables.

Assumption 3 ENCO relies on neural networks to deter-
mine the conditional data distributions p(Xi|...). Hence, for
providing a guarantee, we assume that in the graph learning
step the neural networks have been sufficiently trained such
that they accurately model all possible conditional distribu-
tion p(Xi|...). In practice, the neural networks might have
a slight error. However, as long as enough data, network
complexity, and training time is provided, it is fair to assume
that the difference between the modeled distribution and the
true conditional is smaller than an arbitrary constant ε.

A.2 GRADIENT ESTIMATORS

To update γ and θ based on the objective in Equation 2, we
need to determine their gradients through the expectation
Epγ,θ(C) where C is a discrete variable. For this, we apply
REINFORCE [Williams, 1992]. We limit our discussion
here to the results as those are needed for the convergence
proof.

The gradient for the parameter γij is:

∂

∂γij
L̃ = σ′(γij) · σ(θij) · EX,C−ij

[
LXi→Xj

(Xj)−

LXi 6→Xj
(Xj)+

λsparse
]

(3)

where EX,C−ij
summarizes for brevity the three expecta-

tions in Equation 2 up to the edge Xi → Xj . This excludes
interventions on Xj since we assume the interventions to be
perfect, i.e. intervened variables are independent of the other
variables. Further, LXi→Xj (Xj) denotes the negative log
likelihood for Xj under the adjacency matrix C−ij includ-
ing an edge from Xi to Xj , i.e. Cij = 1. The gradient in
Equation 3 can be intuitively explained: if by the addition of
the edge Xi → Xj , the log-likelihood estimate of Xj is im-
proved by more than λsparse, we increase the corresponding
edge parameter γij ; otherwise, we decrease it.

The orientation parameters θ are similarly derived as γ. As
mentioned before, we only want to take the gradients for θij
when the intervention is performed on Xi or Xj . This leads
us to:

∂

∂θij
L̃ = σ′(θij) ·

(
p(IXi

) · σ(γij) · T (Xi, Xj)−

p(IXj ) · σ(γji) · T (Xj , Xi)
) (4)

with

T (Xk, Xl) = EIXk
,X,C−kl

[LXk→Xl
(Xl)− LXk 6→Xl

(Xl)]
(5)

The probability of taking an intervention on Xi is repre-
sented by p(IXi) (usually uniform across variables). When
the edge Xi → Xj improves the log-likelihood of Xj un-
der intervention on Xi, then the gradient increases θij . In
contrast, when the true edge is Xj → Xi, the correlation
between Xi and Xj learned from observational data would
yield a worse likelihood estimate on interventional data than
without the edge Xj → Xi. This is because p(Xj |Xi, ...)
does not stay invariant under intervening on Xi. Lastly, for
independent nodes, the expectation of the gradient is zero.

A.3 SKETCH OF PROOF

The proof consists of the following three main steps:

Step 1 We show under which conditions the orientation
parameters θij will converge to +∞, i.e. σ(θij) →
1, if Xi is an ancestor of Xj . Similarly, if Xj is an
descendant of Xi, the parameter θij will converge to
−∞, i.e. σ(θij)→ 0.

Step 2 Under the assumption that the orientation param-
eters have converged as in Step 1, we show that for
edges in the true graph, γij will converge to 1. Note
that we need to take additional assumptions/conditions
with respect to λsparse here.
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Step 3 Once the parameters γij and θij have converged for
the edges in the ground truth graph, we show that all
other edges will be removed by the sparsity regularizer.

The following paragraphs provide more details for each step.
Note that causal graphs that do not fulfill all parts of the
convergence guarantee can still eventually be recovered. The
reason is that the conditions listed in the theorems below
ensure that there exists no local minima for θ and γ to
converge in. Although local minima exist, the optimization
process might converge to the global minimum of the true
causal graph.

Theorem A.1. Consider the edge Xi → Xj in the true
causal graph. The orientation parameter θij converges to
σ(θij) = 1 if the following two conditions are fulfilled:

(1) for all possible sets of parents of Xj excluding Xi,
adding Xi improves the log-likelihood estimate of Xj

under the intervention on Xi, or leaves it unchanged:

∀p̂a(Xj) ⊆ X−i,j :
EIXi

,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] ≥ 0

(6)

(2) there exists a set of nodes p̂a(Xj), for which the prob-
ability to be sampled as parents of Xj is greater than
0, and the following condition holds:

∃p̂a(Xj) ⊆ X−i,j :
EIXi

,X [log p(Xj |p̂a(Xj), Xi)− log p(Xj |p̂a(Xj))] > 0

(7)

Proof. Based on the conditions in Equations 6 and 7, we
need to show that the gradient of θij is negative in expec-
tation, independent of other values of γ and θ. Looking at
the gradient of θij in Equation 4, the conditions correspond
to T (Xi, Xj) being smaller or equals to zero. If T (Xi, Xj)
is smaller than zero, the gradient of θij with respect to the
interventions on Xi is negative, i.e. increasing θij . To guar-
antee that the whole gradient of θij is negative, we also need
to show that for interventions on Xj , we obtain T (Xj , Xi)
being positive. When intervening onXj ,Xi andXj become
independent as the edge Xi → Xj is removed in the inter-
vened graph. Therefore, a distribution p(Xi|Xj , ...) relying
on correlations between Xi and Xj from observational data
cannot achieve a better estimate than the same distribution
when removing Xj . The only situation where Xi and Xj

can become conditionally dependent under interventions
on Xj is if Xi and Xj share a collider Xk, and Xi is be-
ing conditioned on the collider Xk and Xj . However, this
requires that θki has negative gradients, i.e. θki increasing,
when intervening onXk. This cannot be the case since under
interventions on Xk, Xi and Xk become conditionally in-
dependent, and the correlations learned from observational
data cannot be transferred to the interventional setting. If

Xk and Xi again share a collider, we can apply this ar-
gumentation recursively until a node Xn does not share a
collider with Xi. The recursion will always come to an end
as we have a finite set of nodes, and the causal graph being
acyclic.

The conditions in Theorem A.1 are commonly fulfilled by
most causal structures. However, there are some situations
where the conditions can fail. One example are structures
with three variables X1, X2, X3 where we have the causal
edges X1 → X2, X1 → X3, X2 → X3. If knowing X2

informs the log-likelihood estimate of X3 more about X1

than about X2 itself, an intervention on X2 could lead to
positive gradients and violate the condition in Equation 6.
Nonetheless, we did not observe any of these situations in
the synthetic and real-world graphs we experimented on.
Furthermore, many such graphs can still be learned when γ
and θ are initialized with zeros.

Theorem A.2. Consider a pair of variables Xi, Xj for
which Xi is an ancestor of Xj without direct edge in the
true causal graph. Then, the orientation parameter of the
edge Xj → Xi converges to σ(θij) = 1 if condition 1 of
Theorem A.1 holds for the pair of Xi, Xj .

Proof. To show this theorem, we need to consider two cases
for a pair of variables Xi and Xj : Xi and Xj are condition-
ally independent under a sampled adjacency matrix, or Xi

and Xj are not independent. Both cases need to be con-
sidered for an intervention on Xi, and an intervention on
Xj .

First, we discuss interventions on Xi. If under the sampled
adjacency matrix Xj is conditionally independent of Xi,
the difference in the log-likelihood estimates T (Xi, Xj) is
zero. The variables can be independent if, for example, the
parents of Xj are all parents of the true causal graph. If Xj

is not conditionally independent of Xi, condition 1 from
Theorem A.1 ensures that Xi only has a positive effect on
the log-likelihood estimate. Thus, under interventions on
Xi, the gradient of θij must be smaller or equals to zero in
expectation, i.e., increases θij .

Next, we consider interventions onXj . If under the sampled
adjacency matrixXi is conditionally independent ofXj , the
difference in the log-likelihood estimates T (Xj , Xi) is zero.
The variables can be independent if Xi is conditioned on
variables that d-separate Xi and Xj in the true causal graph.
For instance, having the children of Xi as parents of Xi

creates this scenario. However, for this scenario to take
place, one or more orientation parameters of parent-child
or ancestor-descendant pairs must be incorrectly converged.
In case of a parent-child pair Xi, Xk, Theorem A.1 shows
that σ(θik) will converge to one removing any possibility
of a reversed edge to be sampled. In case of an ancestor-
descendant pair Xi, Xl, we can apply a recursive argument:
as Xl d-separates Xi and Xj , Xl must come before Xj in
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the causal order. If for the gradient θil, we have a similar
scenario with Xi being conditionally independent of Xj ,
the same argument applies. This can be recursively applied
until no more variables except direct children of Xi can
d-separate Xi and Xj . In that case, σ(θik) will converge to
one, which leads to all other orientation parameters to con-
verge to one as well. If Xi is not conditionally independent
of Xj , we can rely back on the argumentation of Theorem
1 when we have an edge Xi → Xj : as in the intervened
causal graph, Xi and Xj are independent, any correlation
learned from observational data can only lead to a worse
log-likelihood estimate. In cases of colliders, we can rely on
the recursive argument from before. Thus, under interven-
tions on Xj , the gradient of θij must be smaller or equals to
zero in expectation, i.e., increases θij .

Therefore, we can conclude that σ(θij) converges to one for
any ancestor-descendant pairs Xi, Xj .

Theorem A.3. Consider an edge Xi → Xj in the true
causal graph. The parameter γij converges to σ(γij) = 1 if
the following condition holds:

min
p̂a⊆gpai(Xj)

EÎ∼pI(I)Ep̃Î(X)

[
log p(Xj |p̂a, Xi)−

log p(Xj |p̂a)
]
> λsparse

(8)

where gpai(Xj) is the set of nodes excluding Xi which,
according to the ground truth graph, could have an edge to
Xj without introducing a cycle.

Proof. To show this convergence, we assume that the orien-
tation parameters have converged corresponding to Theorem
A.1 and A.2. The parameter γij converges to σ(γij) = 1

if its gradient, ∂
∂γij
L̃, is negative independent of other val-

ues of γ and orientation parameters θ that are not included
in Theorem 1 and 2. The gradient of γij includes an ex-
pectation over adjacency matrices pγ,θ(C). Based on the
converged θ-values, we only need to consider sets of nodes
as parents for Xj that contain parents, ancestors, or inde-
pendent nodes according to the ground truth graph. Among
those remaining parent sets, we need to ensure that for any
such set, the gradient is negative. This is guaranteed by the
condition in Equation 8 since the inequality corresponds to
∂

∂γij
L̃ < 0. If the condition holds for the parent set with the

p̂a), i.e. the maximum gradient, then the gradient of γij can
be guaranteed to be negative in expectation, independent of
the other values of γ.

Theorem A.4. If for all edges Xi → Xj in the true causal
graph, σ(θij) and σ(γij) have converged to one, the likeli-
hood of all other edges, i.e. σ(θlk) · σ(θlk), will converge to
zero.

Proof. If all edges in the ground truth graph have con-
verged, all other pairs of variables Xl, Xk are (condi-
tionally) independent in the graph. Hence, the difference

of the log-likelihood estimate in the gradient of γlk, i.e.
LXl→Xk

(Xk)−LXl 6→Xk
(Xk), is zero in expectation. Thus,

the gradient remaining is:

∂

∂γlk
L̃ = σ′(γlk) · σ(θlk) · λsparse (9)

Since the gradient is positive independent of the values
of γlk and θlk, γlk will decrease until it converges to
σ(γlk) = 0. This discussion excludes the situation when Xl

is a child and descendant of Xk. However, as discussed in
Theorem 1 and 2, the orientation parameters θlk converge
to σ(θlk) = 0 setting those edge likelihoods to zero. Hence,
if γlk is decreasing for all pairs of (conditionally) indepen-
dent variables Xl, Xk in the ground truth graph, and σ(θlk)
converged to zero for children and descendants, the prod-
uct σ(γlk) · σ(θlk) will converge to zero for all edges not
existing in the ground truth graph.

For graphs that fulfill all conditions in the Theorems A.1 to
A.4, ENCO is guaranteed to converge given sufficient data
and time. The conditions in the theorems ensure that there
exist no local minima or saddle points in the loss surface
of the objective in Equation 2 with respect to γ and θ. For
other causal graphs, we might still converge to the correct
DAG but cannot guarantee it due to local minima.
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