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Problem statement 4
X3
* Learn causal relations between variables as a directed, acyclic graph (DAG) from observational and interventional data V
* Assumptions: interventions are sparse (only one variable at a time), soft (distribution over values), perfect (new distribution @
independent of original parents), and available for all variables. ‘
* Continuous-optimization methods are promising due to their efficiency, but acyclicity needs to be ensured by constrained X ‘

optimization methods which are slow and sensitive to hyperparameters, or regularizers without guarantess

ENCO - Efficient Neural Causal Discovery

e Optimize likelihoods of edges based on how well
graphs generalize from observations to interventions

Distribution fitting Graph fitting

* Split parameters into two groups: edge existence y

and orientation 6 for better control on gradients
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Latent confounders Convergence
* Latent confounders between two observable variables without direct causal * With interventions on all variables, we can guarantee that ENCO converges to
relation cause a unique pattern in the graph parameters the correct, directed acyclic causal graph despite no acyclic constraints
* An edge between the two variables is disadvantegous on interventional data * Central condition: the expected improvement of the likelihood estimate by
but beneficial when intervening on any other variable adding a correct edge must be greater than the sparsity regularizer Agparse

* Phenomenon can be detected by recording observational and interventional
gradients on y separately, and combine in a score function:

le(Xi, X;) = o (’Y-(-O)) o (,é@)) , (1 _ (7(())) , (1 _ (’Y](f))) * Tradeoff: low values of Agp,rse Might require longer training times
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Paper and code
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Experiments
* Synthetically generated graphs, 25 nodes
Synthetic graphs * 5k observational, 200 interventional samples
* ENCO recovers 4 out of 6 without with less
than one mistake on average (SHD)
Graph type bidiag chain collider full jungle random
GIES [Hauser et al., 2012] 33.6 (£7.5) 17.5 (£7.3) 24.0 (£2.9) 216.5 (£15.2)  33.1 (£2.9) 57.5 (£14.2)
IGSP [Wang et al., 2017] 32.7 (£5.1)  14.6 (£2.3)  23.7 (£2.3)  253.8 (£12.6) 35.9 (£5.2)  65.4 (+8.0)
SDI [Ke et al., 2019] 9.0 (£2.6) 3.9 (£2.0) 16.1 (£2.4) 153.9 (£10.3) 6.9 (£2.3)  10.8 (£3.9)
DCDI [Brouillard et al., 2020] | 16.9 (£2.0) 10.1 (£1.1) 10.9 (£3.6)  21.0 (£4.8)  17.9 (+4.1) 7.7 (£3.2)
ENCO (ours) 2.2 (£1.4) 1.7 (£1.3) 1.6 (£1.6) 9.2 (£3.4) 1.7 (£1.3) 4.6 (£1.9)
ENCO-acyclic (ours) 0.0 (£0.0) 0.0 (£0.0) 1.6 (£1.6) 5.3 (+2.3) 0.6 (+1.1) 0.2 (£0.5)
Scalability Latent confounders
» Testing ENCO and strongest baselines on scalability to large, * Synthetic graphs with 25 variables plus 5 latent confounders
synthetic graphs of 100 to 1000 variables on arbitrary node pairs except parent-child relations
* With same NN and hardware setting, ENCO is more efficient * ENCO detects most confounders while missed confounders
making only two errors overall in 10 graphs of 1000 variables don’t effect the SHD
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Takeaways

» Splitting graph parameters into edge existence and orientation for greater control over gradients without acyclicity constraints
» Efficient graph optimization using low-variance gradient estimators by testing generalization to interventions
* Convergence guarantees can be given when interventions on all variables are provided

* ENCO reliably and efficiently recovers causal graphs with up to 1000 variables, including latent confounders

Check out our paper and code for details!




