
Efficient Neural Causal Discovery without Acyclicity Constraints
Phillip Lippe1, Taco Cohen2, Efstratios Gavves1

1University of Amsterdam, QUVA lab; 2Qualcomm AI Research, The Netherlands

Paper and code

Experiments

NN

NN

NN

X1

X3

X2

Distribution fitting

X Y

Z

NN

NN

NN

X

Z

Y

Alternate between
both steps

Distribution fitting Graph fitting

!(#!|…)

!(#"|…)

!(##|…)

X1 X2

X3

NN1

NN2

NN3

X1

X3

X2

Alternate between
both steps

Distribution fitting Graph fitting

!!"

!"!

"!" "#"

"!#
!!#

!#!

!#"

!"#

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2)� LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2(X2)� LX3 6!X2(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3(X3)� LX1 6!X3(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3(X3)� LX2 6!X3(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2)� LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3(X3)� LX1 6!X3(X3)]

f�1

f�2

f�3

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2)� LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2(X2)� LX3 6!X2(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3(X3)� LX1 6!X3(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3(X3)� LX2 6!X3(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2)� LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3(X3)� LX1 6!X3(X3)]

f�1

f�2

f�3

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2)� LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2(X2)� LX3 6!X2(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3(X3)� LX1 6!X3(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3(X3)� LX2 6!X3(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2)� LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3(X3)� LX1 6!X3(X3)]

f�1

f�2

f�3

1

X1 X2

X3

NN1

NN2

NN3

X1

X3

X2

Alternate between
both steps

Distribution fitting Graph fitting

Problem statement

ENCO – Efficient Neural Causal Discovery

X1 X2

X3

Sample
graphs

X1 X2

X3

X1 X2

X3

X1 X2

X3

Graph parameters

Intervention

X1

Data batch

Determine
gradients

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

1

X1 X2

X3

Sample
graphs

X1 X2

X3

X1 X2

X3

X1 X2

X3

Graph parameters

Intervention

X1

Data batch

Determine
gradients

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2)� LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2(X2)� LX3 6!X2(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3(X3)� LX1 6!X3(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3(X3)� LX2 6!X3(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2)� LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3(X3)� LX1 6!X3(X3)]

1

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤

C(1)

C(2)

C(3)

LX1!X2(X2)

LX1 6!X2(X2)

LX3!X2(X2)

LX3 6!X2(X2)

LX1!X3(X3)

LX1 6!X3(X3)

LX2!X3(X3)

LX2 6!X3(X3)

@

@�12
L̃ = �0(�12) · �(✓12) · [LX1!X2(X2)� LX1 6!X2(X2) + �sparse]

@

@�32
L̃ = �0(�32) · �(✓32) · [LX3!X2(X2)� LX3 6!X2(X2) + �sparse]

@

@�13
L̃ = �0(�13) · �(✓13) · [LX1!X3(X3)� LX1 6!X3(X3) + �sparse]

@

@�23
L̃ = �0(�23) · �(✓23) · [LX2!X3(X3)� LX2 6!X3(X3) + �sparse]

@

@✓12
L̃ = � @

@✓21
L̃ = �0(✓12) · �(�12) · [LX1!X2(X2)� LX1 6!X2(X2)]

@

@✓13
L̃ = � @

@✓31
L̃ = �0(✓13) · �(�13) · [LX1!X3(X3)� LX1 6!X3(X3)]

1

Estimate log-likelihoods
and average

…

…

…

• Optimize likelihoods of edges based on how well
graphs generalize from observations to interventions

• Split parameters into two groups: edge existence 𝛾
and orientation 𝜃 for better control on gradients

• Probability of edges: 𝑝 𝑋! → 𝑋" = 𝜎 𝛾!" ⋅ 𝜎 𝜃!"
• Fit observational distributions by neural networks,

and evaluate different graphs on likelihood-based
score function without acyclicity constraint:

• Unbiased, low-variance gradient estimator for 𝛾
and 𝜃 via REINFORCE and Monte-Carlo sampling

• Intuition: sample interventional data and 𝐾
graphs, and check for each edge whether its
existence improved the child’s likelihood estimate

• Orientations only updated on interventions

Table 3: Results on graphs from the BnLearn library measured in structural hamming distance (lower
is better). Results are averaged over 5 seeds with standard deviations listed in Appendix D.4. Despite
deterministic variables and rare events, ENCO can recover all graphs with almost no errors.

Dataset cancer [20] asia [21] sachs [37] child [41] alarm [2] diabetes [1] pigs [40]
(5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes) (441 nodes)

SDI [18] 3.0 4.0 7.0 11.8 24.6 422.4 18.0

ENCO (Ours) 0.0 0.0 0.0 0.0 1.0 2.0 0.0

Table 2: Results of ENCO on detecting la-
tent confounders averaged over 25 graphs
with 25 nodes. The few missed confounders
do not affect any other edge predictions.

Metrics ENCO

SHD 0.0 (±0.0)
Confounder recall 96.8% (±9.5%)
Confounder precision 100.0% (±0.0%)

To test the detection of latent confounders, we create
a set of 25 random graphs with 5 additional latent con-
founders. We make sure that every latent confounder
is a parent of two randomly sampled nodes without a
direct edge. The dataset is generated in the same way
as before, except that we do not intervene on the latent
confounders and remove them from the input data to
ENCO. After training, we predict the existence of a
latent confounder on any pair of variables Xi and Xj

if lc(Xi, Xj) is greater than ⌧ . We choose ⌧ = 0.4 but
verify in Appendix D.3 that the method is not sensitive to the specific value of ⌧ . As shown in Table 2,
ENCO detects more than 95% of the latent confounders without any false positives. What is more,
the few mistakes do not affect the detection of all other edges which are recovered perfectly.

4.5 Real-world inspired data

Finally, we evaluate ENCO on a collection of causal graphs from the Bayesian Network Repository
(BnLearn) [40]. The repository contains graphs inspired by real-world applications that are used as
benchmarks in literature. In comparison to the synthetic graphs, the real-world graphs are sparser
with a maximum of 6 parents per node and contain nodes with strongly peaked marginal distributions.
They also contain deterministic variables, making the task challenging even for small graphs.

We compare ENCO to the best baseline from Sections 4.2 and 4.3, SDI [18], and evaluate the methods
on 7 graphs with increasing sizes, see Table 3. We observe that ENCO recovers almost always the
real-world causal graphs with perfect accuracy no matter their size. In contrast, SDI suffers from more
mistakes as the graphs become larger. An exception is the pigs graph [40], which is very sparsely
connected (a maximum of 2 parents per node), and hence easier to learn. The most challenging graph
is diabetes [1] due to its large size and large amount of deterministic variables. ENCO makes only
two mistakes showing that it can handle deterministic variables well. On the alarm graph [2], ENCO
consistently misses out one edge. While using a lower regularizer can guarantee a perfect recovery,
it would require more computation time and data. Yet, it is feasible. We conclude that ENCO can
reliably perform structure learning on a wide variety of settings including deterministic variables.

5 Conclusion

In this paper, we propose ENCO, an efficient structure learning method leveraging observational and
interventional data. ENCO models a graph by independent edge likelihoods with the edge orientation
as a separate parameter. As such, ENCO converges to the correct causal graph under mild conditions.
Its objective is unconstrained with respect to acyclicity allowing for low-variance gradient estimators.
In experiments, we show that ENCO can be efficiently applied to graphs comprising hundreds of
nodes, while also handling deterministic variables and possible latent confounders.

Limitations of ENCO include the need for interventional data on all variables. Future work includes
investigating the generalization of ENCO to incomplete intervention sets. For instance, despite the
absence of interventions one can still recover undirected edges via �. A second limitation is that the
orientations are missing transitivity: if X1 � X2 and X2 � X3, then X1 � X3 must also be true.
Global order distributions such as Plackett-Luce [23, 34] require high variance gradient estimators
and struggled with chains in early experiments. That said, a potential direction is to experiment with
transitive relations for improving convergence speed and working on incomplete intervention sets.

9

Takeaways

Scalability Latent confounders

BnLearn Repository

Synthetic graphs

Chain Full Collider Random

• Synthetically generated graphs, 25 nodes
• 5k observational, 200 interventional samples
• ENCO recovers 4 out of 6 without with less

than one mistake on average (SHD)

• Testing ENCO and strongest baselines on scalability to large,
synthetic graphs of 100 to 1000 variables
• With same NN and hardware setting, ENCO is more efficient

making only two errors overall in 10 graphs of 1000 variables

• Synthetic graphs with 25 variables plus 5 latent confounders
on arbitrary node pairs except parent-child relations
• ENCO detects most confounders while missed confounders

don’t effect the SHD
Xl

Xi Xj· · · · · ·

(a) Latent confounder example (b) Threshold sensitivity

Figure 11: Left: Example of a latent confounder scenario, where Xl is not observed and introduces a
dependency between Xi and Xj on observational data. The dots on the left and right represent even-
tual (observed) parents of Xi and Xj . Right: Plotting the average score lc(Xi, Xj) for confounders
Xi Xl ! Xj in the true causal graph (orange) and maximum score of any other node pair (blue).
The plot shows the detection of latent confounders in ENCO is not sensitive to the specific value of ⌧ .

lc(Xi, Xj) calculated based on Equation 8. We see that the score converges close to 1 for pairs with
a latent confounder, and for all other, it converges to 0. This verifies our motivation of the score
function discussed in Section 3.5, and also shows that the method is not sensitive to the threshold
hyperparameter ⌧ . We choose ⌧ = 0.4 which was slightly higher than the highest value recorded for
any other pair at early stages of training.

D.4 Real-world inspired experiments

Datasets We perform experiments on a collection of causal graphs from the Bayesian Network
Repository (BnLearn) [40]. The repository contains graphs inspired by real-world applications that
are used as benchmarks in literature. We chose the graphs to reflect a variety of sizes and different
challenges (rare events, deterministic variables, etc.). The graphs have been downloaded from the
BnLearn website4.

Hyperparameters We reuse most of the hyperparameters of the previous experiments. For all graphs
less than 100 nodes, we use the hyperparameters of Appendix D.1, i.e. the synthetic graphs of 25
nodes. For all graphs larger than 100 nodes, we use the hyperparameters of Appendix D.2, i.e. the
large-scale graphs. One exception is that we allow the fine-tuning of the regularizer parameter for
both sets. For ENCO, we used a slightly smaller regularizer, �sparse = 0.002, for the small graphs, and
a larger one, �sparse = 0.02, for the large graphs. Due to the large amount of deterministic variables,
ENCO tends to predict more false positives in the beginning before removing them one by one. For
SDI, we also found a smaller regularizer, �sparse = 0.01, to work best for the small graphs. However,
in line with the results of Ke et al. [18], SDI was not able to detect all edges. Even lower regularizers
showed to perform considerably worse on the child dataset while minor improvements were made on
the small graphs. Hence, we settled for �sparse = 0.01. In terms of run time, both methods used 100
epochs for the small graphs and 50 for the large graphs.

Results The results including standard deviations can be found in Table 7. The low standard deviation
for ENCO shows that the approach is stable across seeds even for large graphs. SDI has a zero
standard deviation for a few graphs. In those cases, SDI converged to the same graph across seeds,
but not necessarily the correct graph.

D.5 Additional experiments

In this section, we show additional experiments performed as ablation studies of ENCO. First, we
discuss the effect of using the gradient estimators proposed in Section 3.4 compared to Bengio et al.
[3]. Next, we show experiments on synthetic graphs with deterministic variables.

4https://www.bnlearn.com/bnrepository/

32

• Real-world inspired causal graphs from the BnLearn
Repository [Scutari, 2010]
• ENCO achieves perfect reconstruction for most graphs,

including diabetes with many deterministic variables

• Learn causal relations between variables as a directed, acyclic graph (DAG) from observational and interventional data
• Assumptions: interventions are sparse (only one variable at a time), soft (distribution over values), perfect (new distribution

independent of original parents), and available for all variables.
• Continuous-optimization methods are promising due to their efficiency, but acyclicity needs to be ensured by constrained

optimization methods which are slow and sensitive to hyperparameters, or regularizers without guarantess

lc(Xi, Xj) = σ
(

γ
(O)
ij

)

· σ
(

γ
(O)
ji

)

·

(

1− σ
(

γ
(I)
ij

))

·

(

1− σ
(

γ
(I)
ji

))

arbitrary interventional data alone, excluding deterministic
variables [Pearl, 2009]. In contrast, the orientation can only
be reliably detected from data for which an intervention is
performed on its adjacent nodes, i.e. Xi or Xj for learning
✓ij . While other interventions eventually provide informa-
tion on the edge direction, e.g., intervening on a node Xk

which is a child of Xi and a parent of Xj , we do not know
the relation of Xk to Xi and Xj at this stage, as we are
in the process of learning the structure. Hence, only the
interventions on Xi or Xj reliably uncover the orientation
✓ij . Despite having just one variable for the orientation, �ij

and �ji are learned as two independent parameters. This
is because on interventional data, an edge can improve the
log-likelihood estimate in one direction, but not necessarily
the other as well leading to conflicting gradients.

The objective function we use for optimizing the graph
parameters � and ✓ is written as:

L̃ =EÎ⇠pI(I)Ep̃Î(X)Ep�,✓(C)

"
NX

i=1

LC(Xi)

#

+ �sparse

NX

i=1

NX

j=1

�(�ij) · �(✓ij)

(2)

where pI(I) is the distribution over which variable to inter-
vene on (usually uniform), and p̃Î(X) the joint distribution
of all variables under the intervention Î . In other words,
these two distributions represent our interventional data dis-
tribution. The distribution over adjacency matrices C under
�,✓ is denoted by p�,✓(C) with Cij ⇠ Ber(�(�ij)�(✓ij)),
and LC(Xi) is the negative log-likelihood estimate of the
variable Xi conditioned on the parents according to C:
LC(Xi) = � log f�i(Xi; C·,i � X�i). The second term
of Equation 2 represents a prior towards sparser graphs,
removing redundant edges. It is an `1-regularizer on the
edge probabilities, with the hyperparameter �sparse as reg-
ularization weight. The goal is to optimize � and ✓ such
that it minimizes the objective L̃. For this, we need to deter-
mine their gradients through the expectation Ep�,✓(C) where
C is a discrete variable. For this, we apply REINFORCE
[Williams, 1992] and obtain a gradient which can be esti-
mated using Monte-Carlo sampling. Specifically, to perform
an update step on � and ✓, we sample K graph structures
from p�,✓(C), and use the different likelihood estimates of
all variables on a batch of interventional data to determine
the gradients of the parameters.

2.3 CONVERGENCE

After training, we obtain a graph prediction by selecting
the edges for which �(�ij) and �(✓ij) are greater than 0.5.
The orientation parameters prevent loops between any two
variables, since �(✓ij) can only be greater than 0.5 in one
direction. Although the orientation parameters do not guar-
antee the absence of loops with more variables at any stage

of the training, we show that ENCO converges to the cor-
rect, acyclic graph under mild conditions. The proof for this
convergence contains three steps. First, for every ancestor-
descendant pair Xi, Xj , the orientation parameter ✓ij con-
verges to �(✓ij) = 1 if Xi and Xj are not conditionally
independent on interventional data. Second, every edge
Xi ! Xj in the ground truth graph is learned if adding
Xi to the any parent set of Xj improves the log-likelihood
estimate by at least �sparse. Finally, all other edges will be
removed by the regularizer. We outline a sketch of the proof
in the appendix, and show an experimental verification next.

3 EXPERIMENTS

We evaluate ENCO on structure learning on synthetic
datasets for systematic comparisons. The experiments focus
on graphs with categorical variables. Categorical data is
commonly more difficult in structure learning, as regression
techniques or assumption on linear noise models cannot be
used. Yet, ENCO is also applicable on continuous data.

We compare ENCO to GIES [Hauser and Bühlmann, 2012]
and IGSP [Wang et al., 2017, Yang et al., 2018] as greedy
score-based approaches, and DCDI [Brouillard et al., 2020]
and SDI [Ke et al., 2019] as continuous optimization meth-
ods. Pure constraint-based methods do not scale well to the
given graph and dataset sizes [Guo et al., 2020, Peters et al.,
2017]. We do not compare to methods with observational
data only, since those can just recover the graph up to its
Markov equivalence class. We perform a separate hyperpa-
rameter search for all methods. Since SDI and DCDI use
neural networks to fit (observational) distributions as well,
we use the same network setup as for ENCO. All methods
were executed on the same hardware, namely a 12-core CPU
with a single NVIDIA RTX3090 GPU. Our code is publicly
available at https://github.com/phlippe/ENCO.

3.1 COMMON GRAPH STRUCTURES

We first experiment on synthetic graphs, for which we pick
six common graph structures. The graphs chain and full
represent the minimally- and maximally-connected DAGs.
bidiag is a chain with 2-hop connections, and jungle
is a tree-like graph. In the collider graph, one node
has all other nodes as parents. Finally, random has a ran-
domly sampled graph structure with a likelihood of 0.3
of two nodes being connected by a direct edge. For each
graph structure, we generate 25 graphs with 25 nodes each.
The graph generation process follows the setup of Ke et al.
[2019]. Following common practice, we use structural ham-
ming distance (SHD) as evaluation metric. SHD counts the
number of edges that need to be removed, added, or flipped
in order to obtain the ground truth graph.

We report the average performance and standard deviation

3

Latent confounders

Graph optimization

Convergence

• Latent confounders between two observable variables without direct causal
relation cause a unique pattern in the graph parameters
• An edge between the two variables is disadvantegous on interventional data

but beneficial when intervening on any other variable
• Phenomenon can be detected by recording observational and interventional

gradients on 𝛾 separately, and combine in a score function:

• With interventions on all variables, we can guarantee that ENCO converges to
the correct, directed acyclic causal graph despite no acyclic constraints
• Central condition: the expected improvement of the likelihood estimate by

adding a correct edge must be greater than the sparsity regularizer 𝜆#$%&#'

• Tradeoff: low values of 𝜆#$%&#' might require longer training times

minp̂a⊆gpai(Xj) EÎ∼pI(I)
Ep̃

Î
(X) [log p(Xj |p̂a, Xi)− log p(Xj |p̂a)] > λsparse

Check out our paper and code for details!

➜ Fit NNs to conditional, observational distributions
➜ Learn edge and orientation

parameters based on fitted
distributions

@

@�ij
L̃ = �0(�ij) · �(✓ij)·

EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤ (1)

1

• Splitting graph parameters into edge existence and orientation for greater control over gradients without acyclicity constraints
• Efficient graph optimization using low-variance gradient estimators by testing generalization to interventions
• Convergence guarantees can be given when interventions on all variables are provided
• ENCO reliably and efficiently recovers causal graphs with up to 1000 variables, including latent confounders

Graph type bidiag chain collider full jungle random

GIES [Hauser et al., 2012] 33.6 (±7.5) 17.5 (±7.3) 24.0 (±2.9) 216.5 (±15.2) 33.1 (±2.9) 57.5 (±14.2)

IGSP [Wang et al., 2017] 32.7 (±5.1) 14.6 (±2.3) 23.7 (±2.3) 253.8 (±12.6) 35.9 (±5.2) 65.4 (±8.0)

SDI [Ke et al., 2019] 9.0 (±2.6) 3.9 (±2.0) 16.1 (±2.4) 153.9 (±10.3) 6.9 (±2.3) 10.8 (±3.9)
DCDI [Brouillard et al., 2020] 16.9 (±2.0) 10.1 (±1.1) 10.9 (±3.6) 21.0 (±4.8) 17.9 (±4.1) 7.7 (±3.2)

ENCO (ours) 2.2 (±1.4) 1.7 (±1.3) 1.6 (±1.6) 9.2 (±3.4) 1.7 (±1.3) 4.6 (±1.9)
ENCO-acyclic (ours) 0.0 (±0.0) 0.0 (±0.0) 1.6 (±1.6) 5.3 (±2.3) 0.6 (±1.1) 0.2 (±0.5)

1

Fewer interventions

• ENCO also works well for interventions
on a subset of variables only

Dataset asia sachs child alarm diabetes

(8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes)

SDI 4.0 7.0 11.2 24.4 422.4

ENCO (Ours) 0.0 0.0 0.0 1.0 2.0

1

