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Background: Neural Causal Discovery

* Causal structure learning: find directed acyclic graph from
observational and interventional data

* Recent work: continuous-optimization score-based causal discovery
* Search the space of possible graphs with gradient based methods

* Adjacency matrix parameterized by independent probabilities per edge

* Main problem: limit the search space to directed acyclic graphs

* Constraint-based optimization: h(W) = tr (") —d =0
= Slow and hyperparameter sensitive

* Regularization: penalize cyclic graphs
= Hyperparameter sensitive and limited guarantees

How can we reliably perform causal discovery with gradient-based methods on large scales?
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Scope and Assumptions

* Find the DAG of a causal graphical model (CGM) from observational
and interventional samples

* Variables can be discrete, continuous, or mixed

* CGM is causally sufficient

* Extension to latent confounders possible

* |nterventions are:

* Sparse (single variable)

* Perfect (independent of original parents)

* Available for all observable variables
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ENCO: Efficient Neural Causal Discovery

* Central idea: learn distributions p(X;| ...) from observational data,
test generalization to interventional data

V2
* Parameterize graph with edge existence and orientation parameters 6@@
* Probability of an edge: a(yij) : O'(Qij), with 6;; = —0; 129
* Benefits of two-variable parameterisation:
= More control over gradient updates
= No constraint or regularization for acyclicity needed! "3 @
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ENCO: Efficient Neural Causal Discovery

Overview

Distribution fitting
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Alternate between
both steps
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= Learn neural networks fitting conditional
distributions on observational data

=> Learn edge and orientation parameters
based on fitted distributions
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ENCO: Efficient Neural Causal Discovery

Objectives

Distribution fitting Graph fitting
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Graph fitting
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Gradient estimators

Efficient low-variance, unbiased gradient estimators for edge and orientation parameters

Edge gradients:
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Graph/Data samples Log likelihood w/o edge

Sample and evaluate K graphs to estimate whether an edge

is “beneficial” or not

Similar idea for orientation parameters, but only with adjacent

interventional data

Sparsity regularizer
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Learning causal graphs

Ground truth causal graph Learned edge probabilities
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Convergence

* Theoretical guarantees can be given for ENCO converging to the true causal graph

* Main conditions: for every edge X; — X; in the causal graph,

* the edge X; — X; must not be disadvantegous for the log likelihood estimate of X; under
interventions on X;

* the edge X; — X; must have a greater impact on the log likelihood estimate than the sparsity
regularizer Agparse

* |f the conditions are not fulfilled, local minima can exist
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Latent confounders

* A latent confounder on two variables causes a unique pattern

* Oninterventions on X; and X;, an edge is disadvantegous in both @
directions

* On interventions on other variables, edges are beneficial

* Find confounders by tracking y-parameters on adjacent o @ @ o
interventions and other interventions

* Score pairs of variables on pattern:

le(X;, X;) = (1) o (07) - (1= (+)) - (1= (+47))

* lc(X;, X;) goes to 1if X;, X; share a confounder
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Experiments
Synthetic graphs

Recover syntheticly generated graphs

Testing various common graph forms to find weaknesses
* Graph size: 25 nodes

* Metric: Structural Homming Distance (SHD) = FP + FN + wrongly orientated edges

e e -

Efficient Neural Causal Discovery without Acyclicity Constraints



Experiments
Synthetic graphs

Graph size: 25 nodes

Recover syntheticly generated graphs

Testing various common graph forms to find weaknesses

Metric: Structural Hamming Distance (SHD) = FP + FN + wrongly orientated edges

Graph type bidiag chain collider full jungle random
GIES [Hauser and Bithlmann, 2012] | 47.4 (£5.2) 22.3(£3.5) 13.3(£3.0) 152.7(£12.0) 53.9(£8.9) 86.1(4+12.0)
IGSP [Wang et al., 2017] 33.0(£4.2) 12.0(£1.9) 23.4(£2.2) 264.6(£7.4) 38.6(%£5.7) T76.3(£7.7)
SDI [Ke et al., 2019] 2.1 (£1.5) 0.8(#£0.9 14.7(£4.0) 121.6(+18.4) 1.8(£1.6) 1.8 (£1.9)
DCDI [Brouillard et al., 2020] 3.7 (£1.5) 4.0(£1.3) 0.0 (%0.0) 2.8 (£2.1) 1.2 (£1.5) 2.2 (£1.5)
ENCO (Ours) 0.0 (£0.0) 0.0(£0.0) 0.0(£0.0) 0.3 (£0.9) 0.0 (£0.0) 0.0 (£0.0)
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Experiments
Scalability

» Testing scalability of the approach with synthetic graphs of up to 1000 nodes
* All baselines got the same computational resources

* On average, less than 1 mistake among 1 million edges for largest graph

® ENCO (Ours) ® SDI ® DCDI
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Experiments

BnlLearn Repository

* Experiments on real-world inspired causal graphs
from BnlLearn repository [Scutari, 2010]

* Deterministic variables and very rare events

Graph “cancer”

Dataset cancer asia sachs child alarm diabetes

(5nodes) (8nodes) (11nodes) (20nodes) (37 nodes) (413 nodes) (441 nodes)
SDI [Ke et al., 2019] 3.0 4.0 7.0 11.8 24.6 422.4
ENCO (Ours) 0.0 0.0 0.0 0.0 1.0 2.0
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Experiments

Latent confounders

* Synthetic, random graphs with 5 additional latent confounders

* Detecting confounders by thresholding pairwise scores
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Conclusion

* ENCO: method for finding causal relations from observational and interventional data

* Main characteristics of approach:
* Score function unconstrained in terms of acyclicity
* Scalable in both dataset and graph size

e Guarantees for finding the correct graph

e Future work:
» Extension to imperfect/incomplete intervention sets

* Encoding transitivity: if X; > X, and X, > X3, then X; > X;

0 Code available at: https://github.com/phlippe/ENCO
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