

UNIVERSITY OF AMSTERDAM Faculty of Science

Efficient Neural Causal Discovery without Acyclicity Constraints

Phillip Lippe, Taco Cohen, Efstratios Gavves

Background: Neural Causal Discovery

- *Causal structure learning*: find directed acyclic graph from observational and interventional data
- Recent work: continuous-optimization score-based causal discovery
 - Search the space of possible graphs with gradient based methods
 - Adjacency matrix parameterized by independent probabilities per edge
- Main problem: limit the search space to directed acyclic graphs
 - Constraint-based optimization: $h(W) = tr(e^{W \circ W}) d = 0$ \Rightarrow Slow and hyperparameter sensitive
 - Regularization: penalize cyclic graphs
 - \Rightarrow Hyperparameter sensitive and limited guarantees

Scope and Assumptions

- Find the DAG of a causal graphical model (CGM) from observational and interventional samples
 - Variables can be discrete, continuous, or mixed
- CGM is causally sufficient
 - Extension to latent confounders possible
- Interventions are:
 - Sparse (single variable)
 - Perfect (independent of original parents)
 - Available for all observable variables

$$\begin{array}{c} (\gamma_{13}) & \sigma(\theta_{13}) & [\mathcal{L}_{X_1} \rightarrow X_2(\mathcal{X}_2) & \mathcal{L}_{X_3} \rightarrow \mathcal{L}_2(\mathcal{X}_2) + \mathcal{L}_{xparse]} \\ (\gamma_{13}) & \sigma(\theta_{13}) & [\mathcal{L}_{X_1} \rightarrow X_3(X_3) - \mathcal{L}_{X_1} \rightarrow X_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{23}) & [\mathcal{L}_{X_2} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_2} \rightarrow \chi_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{23}) & [\mathcal{L}_{X_2} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_2} \rightarrow \chi_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{23}) & [\mathcal{L}_{X_2} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_2} \rightarrow \chi_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{23}) & [\mathcal{L}_{X_2} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_2} \rightarrow \chi_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{23}) & [\mathcal{L}_{X_2} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_2} \rightarrow \chi_3(X_3) + \lambda_{sparse]} \\ (\gamma_{13}) & \sigma(\theta_{13}) & [\mathcal{L}_{X_1} \rightarrow \chi_2(X_2) - \mathcal{L}_{X_1} \rightarrow \chi_2(X_2)] \\ (\gamma_{13}) & \mathcal{L}_{\mathcal{L}} = \sigma'(\theta_{13}) & \sigma(\gamma_{13}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{21}) & \mathcal{L} = \sigma'(\theta_{13}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{13}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{13}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{13}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{31}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{31}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{31}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{31}) & \sigma(\gamma_{43}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & \mathcal{L} = \sigma'(\theta_{31}) & \sigma(\gamma_{31}) & [\mathcal{L}_{X_1} \rightarrow \chi_3(X_3) - \mathcal{L}_{X_1} \rightarrow \chi_3(X_3)] \\ (\theta_{31}) & (\theta_{31})$$

NN

 \rightarrow

Y

ENCO: Efficient Neural Causal Discovery

Overview

Distribution fitting

→ Learn neural networks fitting conditional distributions on observational data

→ Learn edge and orientation parameters based on fitted distributions

ENCO: Efficient Neural Causal Discovery

Objectives

Graph fitting $\frac{\partial}{\partial \tilde{\ell}} \tilde{\ell} = \sigma'(\gamma_{12}) \cdot$ $\frac{\partial}{\partial \gamma_{i,i}} \mathcal{L} \equiv \alpha \cdot \mathbb{E}_{\mathbf{X}, C_{-ij}} \left[\mathcal{L}_{X_i \to X_j}(X_j) - \mathcal{L}_{X_i \neq X_j}(X_j) + \lambda_{\text{sparse}} \right]$ (X_1) Intervention $C^{(1)}$ $\frac{\partial \mathcal{L}}{\partial \gamma_{ij}} \mathcal{L} = \alpha \cdot \mathbb{E}_{\mathbf{X}, C_{-ij}} \begin{bmatrix} \mathcal{L}_{X_i \to X_j} (X_j) & -\mathcal{L}_{X_i \not\to X_j} (X_j) \\ \mathcal{L}_{X_i \to X_j} (X_j) & -\mathcal{L}_{X_i \not\to X_j} (X_j) \\ \mathcal{L}_{X_i \to X_j} (X_j) & -\mathcal{L}_{X_i \not\to X_j} (X_j) \end{bmatrix} + \lambda_{\text{sparse}} \end{bmatrix}$ <u>2</u>) · $rac{\partial}{\partial\gamma_{12}} ilde{\mathcal{L}}=$...)) r $\frac{\partial}{\partial \gamma_{ij}} \mathcal{L} = \alpha \cdot \mathbb{E} \underbrace{ \begin{array}{c} \text{Sample} \\ \text{graphs} \\ \textbf{X}, C-ij \end{array}}_{X_1 \not\rightarrow X_2} \mathcal{L}_{X_1} \mathcal{L}_{X_2} \mathcal{L}_{X$ Determine $\frac{\partial}{\partial\gamma_{32}}\tilde{\mathcal{L}}=$...)) gradients **Graph parameters** $\frac{\partial}{\partial \theta_{12}} \tilde{\mathcal{L}} = \dots \tilde{\mathcal{L}}$ $\mathcal{L}_{X_3} \mathcal{L}_{X_2}^{(3)}(X_2)$ X_1 X_2 $\mathcal{L}_{X_{13}} \overset{(X_2)}{\longleftarrow} \overset{(X_2)}{\longleftarrow} \overset{(X_2)}{\longleftarrow} \overset{(X_1)}{\longleftarrow} \overset{(X_1)}{\longleftarrow} \overset{(X_2)}{\longleftarrow} \overset{(X_2)}{\to} \overset{$ X_2 -)Ĩ ($\underbrace{\begin{array}{c} X_{31} \neq X_{23} \\ X_{31} \neq X_{23} \\ X_{31} \neq X_{23} \\ X_{31} \neq X_{31} \\ X_{31} \neq X_{32} \\ X_{31} \neq X_{31} \\ X_{31} \neq X_{32} \\ X_{32} \neq X_{33} \\ X_{32} \neq X_{33} \\ X_{32} \neq X_{33} \\ X_{33} = X_{33} \\ X_$ X_3 $\tilde{\mathcal{L}} =$ X_3 $\partial \theta_{1i}$ 0031

住留dient Neural Causal Discovery without Acyclicity Constraints

Gradient estimators

- Efficient low-variance, unbiased gradient estimators for edge and orientation parameters
- Edge gradients:

$$\frac{\partial}{\partial \gamma_{ij}} \mathcal{L} = \alpha \cdot \mathbb{E}_{\mathbf{X}, C_{-ij}} \begin{bmatrix} \mathcal{L}_{X_i \to X_j}(X_j) - \mathcal{L}_{X_i \not\to X_j}(X_j) + \lambda_{\text{sparse}} \end{bmatrix}$$
Graph/Data samples Log likelihood w/o edge Sparsity regularizer

- Sample and evaluate *K* graphs to estimate whether an edge is "beneficial" or not
- Similar idea for orientation parameters, but only with adjacent interventional data

Learning causal graphs

Ground truth causal graph

Learned edge probabilities

Convergence

- Theoretical guarantees can be given for ENCO converging to the true causal graph
- **Main conditions**: for every edge $X_i \rightarrow X_j$ in the causal graph,
 - the edge $X_i \rightarrow X_j$ must not be disadvantegous for the log likelihood estimate of X_j under interventions on X_i
 - the edge $X_i \rightarrow X_j$ must have a greater impact on the log likelihood estimate than the sparsity regularizer λ_{sparse}
- If the conditions are not fulfilled, local minima can exist

Latent confounders

- A latent confounder on two variables causes a unique pattern
 - On interventions on X_i and X_j, an edge is disadvantegous in both directions
 - On interventions on other variables, edges are beneficial
- Find confounders by tracking γ -parameters on adjacent interventions and other interventions
 - Score pairs of variables on pattern:

$$lc(X_i, X_j) = \sigma\left(\gamma_{ij}^{(O)}\right) \cdot \sigma\left(\gamma_{ji}^{(O)}\right) \cdot \left(1 - \sigma\left(\gamma_{ij}^{(I)}\right)\right) \cdot \left(1 - \sigma\left(\gamma_{ji}^{(I)}\right)\right)$$

• $lc(X_i, X_j)$ goes to 1 if X_i, X_j share a confounder

Experiments Synthetic graphs

- Recover syntheticly generated graphs
- Testing various common graph forms to find weaknesses
- Graph size: 25 nodes
- Metric: Structural Hamming Distance (SHD) = FP + FN + wrongly orientated edges

Experiments Synthetic graphs

- Recover syntheticly generated graphs
- Testing various common graph forms to find weaknesses
- Graph size: 25 nodes
- Metric: Structural Hamming Distance (SHD) = FP + FN + wrongly orientated edges

Graph type	bidiag	chain	collider	full	jungle	random
GIES [Hauser and Bühlmann, 2012]	$ 47.4 (\pm 5.2)$	$22.3 (\pm 3.5)$	$13.3 (\pm 3.0)$	$152.7 (\pm 12.0)$	$53.9(\pm 8.9)$	86.1 (±12.0)
IGSP [Wang et al., 2017]	$33.0 (\pm 4.2)$	$12.0~(\pm 1.9)$	$23.4 (\pm 2.2)$	$264.6~(\pm 7.4)$	$38.6~(\pm 5.7)$	$76.3(\pm 7.7)$
SDI [Ke et al., 2019]	$2.1 (\pm 1.5)$	$0.8~(\pm 0.9)$	$14.7 (\pm 4.0)$	$121.6~(\pm 18.4)$	$1.8 (\pm 1.6)$	$1.8 (\pm 1.9)$
DCDI [Brouillard et al., 2020]	$3.7 (\pm 1.5)$	$4.0 (\pm 1.3)$	$0.0 (\pm 0.0)$	$2.8 (\pm 2.1)$	$1.2 (\pm 1.5)$	$2.2 (\pm 1.5)$
ENCO (Ours)	0.0 (±0.0)	0.0 (±0.0)	0.0 (±0.0)	0.3 (±0.9)	0.0 (±0.0)	0.0 (±0.0)

Experiments Scalability

- Testing scalability of the approach with synthetic graphs of up to 1000 nodes
- All baselines got the same computational resources
- On average, less than 1 mistake among 1 million edges for largest graph

Experiments BnLearn Repository

- Experiments on real-world inspired causal graphs from BnLearn repository [Scutari, 2010]
- Deterministic variables and very rare events

Dataset	cancer (5 nodes)	asia (8 nodes)	sachs (11 nodes)	child (20 nodes)	alarm (37 nodes)	diabetes (413 nodes)	pigs (441 nodes)
SDI [Ke et al., 2019]	3.0	4.0	7.0	11.8	24.6	422.4	18.0
ENCO (Ours)	0.0	0.0	0.0	0.0	1.0	2.0	0.0

Experiments Latent confounders

- Synthetic, random graphs with 5 additional latent confounders
- Detecting confounders by thresholding pairwise scores

Metrics	ENCO
SHD Confounder recall Confounder precision	$\begin{array}{c} 0.0\ (\pm 0.0)\\ 96.8\%\ (\pm 9.5\%)\\ 100.0\%\ (\pm 0.0\%)\end{array}$

Conclusion

- ENCO: method for finding causal relations from observational and interventional data
- Main characteristics of approach:
 - Score function unconstrained in terms of acyclicity
 - Scalable in both dataset and graph size
 - Guarantees for finding the correct graph
- Future work:
 - Extension to imperfect/incomplete intervention sets
 - Encoding transitivity: if $X_1 > X_2$ and $X_2 > X_3$, then $X_1 > X_3$

Code available at: <u>https://github.com/phlippe/ENCO</u>