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Background: Neural Causal Discovery

• Causal structure learning: find directed acyclic graph from 
observational and interventional data

• Recent work: continuous-optimization score-based causal discovery
• Search the space of possible graphs with gradient based methods

• Adjacency matrix parameterized by independent probabilities per edge

• Main problem: limit the search space to directed acyclic graphs

• Constraint-based optimization:
⇒ Slow and hyperparameter sensitive

• Regularization: penalize cyclic graphs
⇒ Hyperparameter sensitive and limited guarantees
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3 A new characterization of acyclicity

In order to make (3) amenable to black-box optimization, we propose to replace the combinatorial
acyclicity constraint G(W ) 2 D in (3) with a single smooth equality constraint h(W ) = 0. Ideally,
we would like a function h : Rd⇥d ! R that satisfies the following desiderata:

(a) h(W ) = 0 if and only if W is acyclic (i.e. G(W ) 2 D);
(b) The values of h quantify the “DAG-ness” of the graph;
(c) h is smooth;
(d) h and its derivatives are easy to compute.

Property (b) is useful in practice for diagnostics. By “DAG-ness”, we mean some quantification of
how severe violations from acyclicity become as W moves further from D. Although there are many
ways to satisfy (b) by measuring some notion of “distance” to D, typical approaches would violate
(c) and (d). For example, h might be the minimum `2 distance to D or it might be the sum of edge
weights along all cyclic paths of W , however, these are either non-smooth (violating (c)) or hard to
compute (violating (d)). If a function that satisfies desiderata (a)-(d) exists, we can hope to apply
existing machinery for constrained optimization such as Lagrange multipliers. Consequently, the
DAG learning problem becomes equivalent to solving a numerical optimization problem, which is
agnostic about the graph structure.

Our main result establishes the existence of such a function:
Theorem 1. A matrix W 2 Rd⇥d is a DAG if and only if

h(W ) = tr
�
e
W�W �

� d = 0, (5)

where � is the Hadamard product and e
A is the matrix exponential of A. Moreover, h(W ) has a

simple gradient

rh(W ) =
�
e
W�W �T � 2W, (6)

and satisfies all of the desiderata (a)-(d).

We sketch a proof of the first claim here; a formal proof of Theorem 1 can be found in Appendix A.
Let S = W �W , then S 2 Rd⇥d

+ while preserving the sparsity pattern of W . Recall for any positive
integer k, the entries of matrix power (Sk)ij is the sum of weight products along all k-step paths from
node i to node j. Since S is nonnegative, tr(Sk) = 0 iff there is no k-cycles in the graph. Expanding
the power series,

tr(eS) = tr(I) + tr(S) +
1

2!
tr(S2) + · · · � d, (7)

and the equality is attained iff the underlying graph of S, equivalently W , has no cycles.

A key conclusion from Theorem 1 is that h and its gradient only involve evaluating the matrix
exponential, which is a well-studied function in numerical anlaysis, and whose O(d3) algorithm [1]
is readily available in many scientific computing libraries. Although the connection between trace of
matrix power and number of cycles in the graph is well-known [19], to the best of our knowledge,
this characterization of acyclicity has not appeared in the DAG learning literature previously. We
defer the discussion of other possible characterizations in the appendix. In the next section, we apply
Theorem 1 to solve the program (3) to stationarity by treating it as an equality constrained program.

4 Optimization

Theorem 1 establishes a smooth, algebraic characterization of acyclicity that is also computable. As a
consequence, the following equality-constrained program (ECP) is equivalent to (3):

(ECP)
min

W2Rd⇥d
F (W )

subject to h(W ) = 0.
(8)

4

How can we reliably perform causal discovery with gradient-based methods on large scales?



Scope and Assumptions

• Find the DAG of a causal graphical model (CGM) from observational 
and interventional samples
• Variables can be discrete, continuous, or mixed

• CGM is causally sufficient
• Extension to latent confounders possible

• Interventions are:
• Sparse (single variable)

• Perfect (independent of original parents) 

• Available for all observable variables
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ENCO: Efficient Neural Causal Discovery

• Central idea: learn distributions 𝑝(𝑋!| … ) from observational data, 
test generalization to interventional data

• Parameterize graph with edge existence and orientation parameters

• Probability of an edge: 𝜎 𝛾!" ⋅ 𝜎 𝜃!" , with 𝜃!" = −𝜃"!

• Benefits of two-variable parameterisation:

⇒ More control over gradient updates

⇒ No constraint or regularization for acyclicity needed!
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ENCO: Efficient Neural Causal Discovery
Overview

➜ Learn neural networks fitting conditional 
distributions on observational data

➜ Learn edge and orientation parameters 
based on fitted distributions
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ENCO: Efficient Neural Causal Discovery
Objectives

Objective
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arbitrary interventional data alone, excluding deterministic
variables [Pearl, 2009]. In contrast, the orientation can only
be reliably detected from data for which an intervention is
performed on its adjacent nodes, i.e. Xi or Xj for learning
✓ij . While other interventions eventually provide informa-
tion on the edge direction, e.g., intervening on a node Xk

which is a child of Xi and a parent of Xj , we do not know
the relation of Xk to Xi and Xj at this stage, as we are
in the process of learning the structure. Hence, only the
interventions on Xi or Xj reliably uncover the orientation
✓ij . Despite having just one variable for the orientation, �ij

and �ji are learned as two independent parameters. This
is because on interventional data, an edge can improve the
log-likelihood estimate in one direction, but not necessarily
the other as well leading to conflicting gradients.

The objective function we use for optimizing the graph
parameters � and ✓ is written as:

L̃ =EÎ⇠pI(I)Ep̃Î(X)Ep�,✓(C)

"
NX

i=1

LC(Xi)

#

+ �sparse

NX

i=1

NX

j=1

�(�ij) · �(✓ij)

(2)

where pI(I) is the distribution over which variable to inter-
vene on (usually uniform), and p̃Î(X) the joint distribution
of all variables under the intervention Î . In other words,
these two distributions represent our interventional data dis-
tribution. The distribution over adjacency matrices C under
�,✓ is denoted by p�,✓(C) with Cij ⇠ Ber(�(�ij)�(✓ij)),
and LC(Xi) is the negative log-likelihood estimate of the
variable Xi conditioned on the parents according to C:
LC(Xi) = � log f�i(Xi; C·,i � X�i). The second term
of Equation 2 represents a prior towards sparser graphs,
removing redundant edges. It is an `1-regularizer on the
edge probabilities, with the hyperparameter �sparse as reg-
ularization weight. The goal is to optimize � and ✓ such
that it minimizes the objective L̃. For this, we need to deter-
mine their gradients through the expectation Ep�,✓(C) where
C is a discrete variable. For this, we apply REINFORCE
[Williams, 1992] and obtain a gradient which can be esti-
mated using Monte-Carlo sampling. Specifically, to perform
an update step on � and ✓, we sample K graph structures
from p�,✓(C), and use the different likelihood estimates of
all variables on a batch of interventional data to determine
the gradients of the parameters.

2.3 CONVERGENCE

After training, we obtain a graph prediction by selecting
the edges for which �(�ij) and �(✓ij) are greater than 0.5.
The orientation parameters prevent loops between any two
variables, since �(✓ij) can only be greater than 0.5 in one
direction. Although the orientation parameters do not guar-
antee the absence of loops with more variables at any stage

of the training, we show that ENCO converges to the cor-
rect, acyclic graph under mild conditions. The proof for this
convergence contains three steps. First, for every ancestor-
descendant pair Xi, Xj , the orientation parameter ✓ij con-
verges to �(✓ij) = 1 if Xi and Xj are not conditionally
independent on interventional data. Second, every edge
Xi ! Xj in the ground truth graph is learned if adding
Xi to the any parent set of Xj improves the log-likelihood
estimate by at least �sparse. Finally, all other edges will be
removed by the regularizer. We outline a sketch of the proof
in the appendix, and show an experimental verification next.

3 EXPERIMENTS
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score-based approaches, and DCDI [Brouillard et al., 2020]
and SDI [Ke et al., 2019] as continuous optimization meth-
ods. Pure constraint-based methods do not scale well to the
given graph and dataset sizes [Guo et al., 2020, Peters et al.,
2017]. We do not compare to methods with observational
data only, since those can just recover the graph up to its
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neural networks to fit (observational) distributions as well,
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available at https://github.com/phlippe/ENCO.
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of two nodes being connected by a direct edge. For each
graph structure, we generate 25 graphs with 25 nodes each.
The graph generation process follows the setup of Ke et al.
[2019]. Following common practice, we use structural ham-
ming distance (SHD) as evaluation metric. SHD counts the
number of edges that need to be removed, added, or flipped
in order to obtain the ground truth graph.

We report the average performance and standard deviation
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Distribution fitting trains a neural network f�i per variable Xi to model its observational, conditional
data distribution p(Xi|...). The input to the network are all other variables, X�i, but we apply a
dropout-like scheme to the input for simulating different sets of parents. Specifically, during training,
we randomly set an input variable Xj to zero based on the probability of its corresponding edge
Xj ! Xi. Similar techniques have been used by previous works [4, 16, 17, 20, 47]. The training can
be summarized as the following optimization problem:

min
�i

EXEM [� log f�i(Xi;M�i � X�i)] (1)

where Mj ⇠ Ber(p(Xj ! Xi)). If Xi is a categorical random variable, we apply a softmax as
output activation function of f�i . For continuous cases, a Normalizing Flow [32] can be used for f�i .

Graph fitting uses the learned networks and interventional data to score and compare different graphs.
For parameterizing the edge probabilities, we use two sets of parameters: � 2 RN⇥N represents
the existence of edges in a graph, and ✓ 2 RN⇥N the orientation of the edges. The likelihood of an
edge is determined by p(Xi ! Xj) = �(�ij) · �(✓ij), with �(...) being the sigmoid function and
✓ij = �✓ji. The probability of the two orientations always sum to one. The benefit of separating
the edge probabilities into two independent parameters � and ✓ is that it gives us more control over
the gradient updates. The existence of an (undirected) edge can usually be already learned from
observational or arbitrary interventional data alone excluding deterministic variables [28]. In contrast,
the orientation can only be reliably detected from data for which an intervention is performed on
its adjacent nodes, i.e. Xi or Xj for learning ✓ij . While other interventions can eventually provide
information on the edge direction, e.g., intervening on a node Xk which is a child of Xi and a parent
of Xj , we do not know the relation of Xk to Xi and Xj at this stage, as we are in the process of
learning the structure. Hence, only the interventions on Xi or Xj can reliably uncover the orientation
✓ij . Despite having just one variable for the orientation, �ij and �ji are learned as two independent
parameters. This is because on interventional data, an edge can improve the log-likelihood estimate
in one direction, but not necessarily the other as well leading to conflicting gradients.

The objective function we use for optimizing the graph parameters � and ✓ can be written as:

L̃ = E
Î⇠pI(I)Ep̃Î(X)Ep�,✓(C)

"
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#
+ �sparse
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�(�ij) · �(✓ij) (2)

where pI(I) is the distribution over which variable to intervene on (usually uniform), and p̃
Î
(X) the

joint distribution of all variables under the intervention Î . In other words, these two distributions
represent our interventional data distribution. The distribution over adjacency matrices C under �,✓
is denoted by p�,✓(C) with Cij ⇠ Ber(�(�ij)�(✓ij)), and LC(Xi) is the negative log-likelihood
estimate of variable Xi conditioned on the parents according to C: LC(Xi) = � log f�i(Xi; C·,i �
X�i). The second term of Equation 2 represents a prior towards sparser graphs removing redundant
edges. It is an `1-regularizer on the edge probabilities with the hyperparameter �sparse as regularization
weight. The goal is to optimize � and ✓ such that it minimizes the objective L̃.

Prediction Alternating between distribution and graph fitting stage allows us to fine-tune the neural
networks to the most probable parent sets along the training. After training, we obtain a graph
prediction by selecting the edges for which �(�ij) and �(✓ij) is greater than 0.5. The orientation
parameters prevent loops between any two variables, since �(✓ij) can only be greater than 0.5 in
one direction. While the orientation parameters do not guarantee the absence of loops with more
variables at any stage of the training, we show that ENCO yet converges to the correct, acyclic graph.

3.3 Low-variance gradient estimators for edge parameters

To update � and ✓ based on the objective in Equation 2, we can determine their gradients through the
expectation Ep�,✓(C) using REINFORCE [45]. For clarity of exposition, we limit the discussion here
to the final results and provide the detailed derivations in Section A. For the parameter �ij , we obtain
the following gradient:

@
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L̃ = �0(�ij) · �(✓ij) · EX,C�ij

⇥
LXi!Xj (Xj) � LXi 6!Xj (Xj) + �sparse

⇤
(3)

where EX,C�ij summarizes for brevity the three expectations in Equation 2 up to the edge Xi !
Xj . This excludes interventions on Xj since we assume the interventions to be perfect. Further,
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Gradient estimators

• Efficient low-variance, unbiased gradient estimators for edge and orientation parameters

• Edge gradients:

• Sample and evaluate 𝐾 graphs to estimate whether an edge 
is “beneficial” or not

• Similar idea for orientation parameters, but only with adjacent 
interventional data

@

@�ij
L = ↵ · EX,C�ij

⇥
LXi!Xj (Xj)� LXi 6!Xj (Xj) + �sparse

⇤
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Learning causal graphs

Ground truth causal graph Learned edge probabilities
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Convergence

• Theoretical guarantees can be given for ENCO converging to the true causal graph 

• Main conditions: for every edge 𝑋" → 𝑋# in the causal graph,

• the edge 𝑋" → 𝑋# must not be disadvantegous for the log likelihood estimate of 𝑋# under 
interventions on 𝑋"

• the edge 𝑋" → 𝑋# must have a greater impact on the log likelihood estimate than the sparsity 
regularizer 𝜆$%&'$(

• If the conditions are not fulfilled, local minima can exist  

Introduction Categorical Bayesian Networks String Diagram Surgery References

Determining interventional distributions

X1

X2

X3

7 / 8
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Latent confounders

• A latent confounder on two variables causes a unique pattern
• On interventions on 𝑋! and 𝑋", an edge is disadvantegous in both 

directions
• On interventions on other variables, edges are beneficial

• Find confounders by tracking 𝛾-parameters on adjacent 
interventions and other interventions
• Score pairs of variables on pattern:

• lc 𝑋! , 𝑋" goes to 1 if 𝑋! , 𝑋" share a confounder

11Efficient Neural Causal Discovery without Acyclicity Constraints
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(a) Latent confounder example (b) Threshold sensitivity

Figure 11: Left: Example of a latent confounder scenario, where Xl is not observed and introduces a
dependency between Xi and Xj on observational data. The dots on the left and right represent even-
tual (observed) parents of Xi and Xj . Right: Plotting the average score lc(Xi, Xj) for confounders
Xi  Xl ! Xj in the true causal graph (orange) and maximum score of any other node pair (blue).
The plot shows the detection of latent confounders in ENCO is not sensitive to the specific value of ⌧ .

lc(Xi, Xj) calculated based on Equation 8. We see that the score converges close to 1 for pairs with
a latent confounder, and for all other, it converges to 0. This verifies our motivation of the score
function discussed in Section 3.5, and also shows that the method is not sensitive to the threshold
hyperparameter ⌧ . We choose ⌧ = 0.4 which was slightly higher than the highest value recorded for
any other pair at early stages of training.

D.4 Real-world inspired experiments

Datasets We perform experiments on a collection of causal graphs from the Bayesian Network
Repository (BnLearn) [40]. The repository contains graphs inspired by real-world applications that
are used as benchmarks in literature. We chose the graphs to reflect a variety of sizes and different
challenges (rare events, deterministic variables, etc.). The graphs have been downloaded from the
BnLearn website4.

Hyperparameters We reuse most of the hyperparameters of the previous experiments. For all graphs
less than 100 nodes, we use the hyperparameters of Appendix D.1, i.e. the synthetic graphs of 25
nodes. For all graphs larger than 100 nodes, we use the hyperparameters of Appendix D.2, i.e. the
large-scale graphs. One exception is that we allow the fine-tuning of the regularizer parameter for
both sets. For ENCO, we used a slightly smaller regularizer, �sparse = 0.002, for the small graphs, and
a larger one, �sparse = 0.02, for the large graphs. Due to the large amount of deterministic variables,
ENCO tends to predict more false positives in the beginning before removing them one by one. For
SDI, we also found a smaller regularizer, �sparse = 0.01, to work best for the small graphs. However,
in line with the results of Ke et al. [18], SDI was not able to detect all edges. Even lower regularizers
showed to perform considerably worse on the child dataset while minor improvements were made on
the small graphs. Hence, we settled for �sparse = 0.01. In terms of run time, both methods used 100
epochs for the small graphs and 50 for the large graphs.

Results The results including standard deviations can be found in Table 7. The low standard deviation
for ENCO shows that the approach is stable across seeds even for large graphs. SDI has a zero
standard deviation for a few graphs. In those cases, SDI converged to the same graph across seeds,
but not necessarily the correct graph.

D.5 Additional experiments

In this section, we show additional experiments performed as ablation studies of ENCO. First, we
discuss the effect of using the gradient estimators proposed in Section 3.4 compared to Bengio et al.
[3]. Next, we show experiments on synthetic graphs with deterministic variables.

4https://www.bnlearn.com/bnrepository/
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Experiments
Synthetic graphs

• Recover syntheticly generated graphs

• Testing various common graph forms to find weaknesses

• Graph size: 25 nodes 
• Metric: Structural Hamming Distance (SHD) = FP + FN + wrongly orientated edges

Chain Full Collider Random
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Table 1: Comparing structure learning methods in terms of structural hamming distance (SHD) on common graph structures
(lower is better), averaged over 25 graphs each. In line with the theoretical guarantees, ENCO can reliably recover five out
of the six graph structures without errors.

Graph type bidiag chain collider full jungle random

GIES [Hauser and Bühlmann, 2012] 47.4 (±5.2) 22.3 (±3.5) 13.3 (±3.0) 152.7 (±12.0) 53.9 (±8.9) 86.1 (±12.0)
IGSP [Wang et al., 2017] 33.0 (±4.2) 12.0 (±1.9) 23.4 (±2.2) 264.6 (±7.4) 38.6 (±5.7) 76.3 (±7.7)
SDI [Ke et al., 2019] 2.1 (±1.5) 0.8 (±0.9) 14.7 (±4.0) 121.6 (±18.4) 1.8 (±1.6) 1.8 (±1.9)
DCDI [Brouillard et al., 2020] 3.7 (±1.5) 4.0 (±1.3) 0.0 (±0.0) 2.8 (±2.1) 1.2 (±1.5) 2.2 (±1.5)

ENCO (Ours) 0.0 (±0.0) 0.0 (±0.0) 0.0 (±0.0) 0.3 (±0.9) 0.0 (±0.0) 0.0 (±0.0)

Figure 2: Evaluating SDI, DCDI, and ENCO on large graphs
in terms of SHD (lower is better). Dots represent single
experiments, lines connect the averages. DCDI ran out of
memory for 1000 nodes.

works reasonably well on sparse graphs but struggles with
nodes that have many parents. The second best is DCDI
which performs well on the collider graph since its
edges can be independently orientated. Although DCDI
converges to acyclic graphs, it predicts some incorrectly
oriented edges, while being 8 times slower than ENCO on
the same hardware. ENCO reliably learns five out of six
graph structures without errors except of rare mistakes on
the full graph. Therefore, the theoretical guarantees also
hold in practice for small graphs.

3.2 SCALABILITY

Next, we test ENCO on graphs with large sets of vari-
ables. We create random graphs ranging from N = 100 to
N = 1, 000 nodes. Every node has on average 8 in- or out-
going edges and a maximum of 10 parents. The challenge
of large graphs is that the number of possible edges grows
quadractically and the number of DAGs super-exponentially.
Hence, efficient methods are needed.

We compare ENCO to the two best performing baselines
from Table 1, SDI [Ke et al., 2019] and DCDI [Brouillard
et al., 2020]. All methods were given the same setup of neu-

ral networks and a maximum runtime which corresponds
to 30 epochs for ENCO. We plot the SHD over graph size
and runtime in Figure 2. ENCO is capable of recovering the
causal graphs perfectly with no errors except for the 1, 000-
node graph, for which it misses one out of 1 million edges
in 2 out of 10 experiments. SDI and DCDI achieve con-
siderably worse performance. This shows that ENCO can
efficiently be applied to 1, 000 variables while maintaining
its convergence guarantees. Similar results have also been
observed on real-world inspired graphs from the Bayesian
Network Repository [Scutari, 2010] including the graphs
diabetes (413 nodes) and pigs (441 nodes).

4 CONCLUSION

In this work, we propose ENCO, an efficient structure learn-
ing method leveraging observational and interventional data.
ENCO models a graph by independent edge likelihoods with
the edge orientation as a separate parameter. As such, its
objective is unconstrained with respect to acyclicity while
providing convergence guarantees. In experiments, we show
that ENCO can be efficiently applied to graphs comprising
hundreds of nodes with a very high accuracy.

Aspects that have not been detailed in this extended abstract
include the low-variance gradient estimators used for � and
✓. Compared to related work, this estimator has a ten times
lower standard deviation which is crucial for learning large
graphs. Further, ENCO can be extended to handle latent
confounders which cause unique patterns in the �-gradients.

Limitations of ENCO include the need for interventional
data on all variables. Future work includes investigating the
generalization of ENCO to incomplete intervention sets. For
instance, despite the absence of interventions one can still
recover undirected edges via �. A second limitation is that
the orientations are missing transitivity: if X1 � X2 and
X2 � X3, then X1 � X3 must also be true. Global order
distributions such as Plackett-Luce [Luce, 1959, Plackett,
1975] require high variance gradient estimators and strug-
gled with chains in early experiments. That said, a potential
direction is to experiment with transitive relations for im-
proving convergence speed.

4



Experiments
Scalability

• Testing scalability of the approach with synthetic graphs of up to 1000 nodes 

• All baselines got the same computational resources

• On average, less than 1 mistake among 1 million edges for largest graph
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Experiments
BnLearn Repository

• Experiments on real-world inspired causal graphs 
from BnLearn repository [Scutari, 2010] 

• Deterministic variables and very rare events

Graph “cancer”

Efficient Neural Causal Discovery without Acyclicity Constraints 15

Dataset cancer asia sachs child alarm diabetes pigs
(5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes) (441 nodes)

SDI [Ke et al., 2019] 3.0 4.0 7.0 11.8 24.6 422.4 18.0

ENCO (Ours) 0.0 0.0 0.0 0.0 1.0 2.0 0.0
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Experiments
Latent confounders

• Synthetic, random graphs with 5 additional latent confounders

• Detecting confounders by thresholding pairwise scores

16Efficient Neural Causal Discovery without Acyclicity Constraints

Table 3: Results on graphs from the BnLearn library measured in structural hamming distance (lower
is better). Results are averaged over 5 seeds with standard deviations listed in Section C.4. Despite
deterministic variables and rare events, ENCO can recover all graphs with almost no errors.

Dataset cancer [18] asia [19] sachs [34] child [38] alarm [2] diabetes [1] pigs [37]
(5 nodes) (8 nodes) (11 nodes) (20 nodes) (37 nodes) (413 nodes) (441 nodes)

SDI [17] 3.0 4.0 7.0 11.8 24.6 422.4 18.0

ENCO (Ours) 0.0 0.0 0.0 0.0 1.0 2.0 0.0

Table 2: Results of ENCO on detecting la-
tent confounders averaged over 25 graphs
with 25 nodes. The few missed confounders
do not affect any other edge predictions.

Metrics ENCO

SHD 0.0 (±0.0)
Confounder recall 96.8% (±9.5%)
Confounder precision 100.0% (±0.0%)

To test the detection of latent confounders, we create
a set of 25 random graphs with 5 additional latent con-
founders. We make sure that every latent confounder
is a parent of two randomly sampled nodes without a
direct edge. The dataset is generated in the same way
as before, except that we do not intervene on the latent
confounders and remove them from the input data to
ENCO. After training, we predict the existence of a
latent confounder on any pair of variables Xi and Xj

if lc(Xi, Xj) is greater than ⌧ . We choose ⌧ = 0.4 but
emphasize that the method is not sensitive to the specific value of ⌧ . As shown in Table 2, ENCO
detects more than 95% of the latent confounders without any false positives. What is more, the few
mistakes do not affect the detection of all other edges which are recovered perfectly.

4.5 Real-world inspired data

Finally, we evaluate ENCO on a collection of causal graphs from the Bayesian Network Repository
(BnLearn) [37]. The repository contains graphs inspired by real-world applications that are used as
benchmarks in literature. In comparison to the synthetic graphs, the real-world graphs are sparser
with a maximum of 6 parents per node and contain nodes with strongly peaked marginal distributions.
They also contain deterministic variables, making the task challenging even for small graphs.

We compare ENCO to the best baseline from Sections 4.2 and 4.3, SDI [17], and evaluate the methods
on 7 graphs with increasing sizes, see Table 3. We observe that ENCO recovers almost always the
real-world causal graphs with perfect accuracy no matter their size. In contrast, SDI suffers from more
mistakes as the graphs become larger. An exception is the pigs graph [37], which is very sparsely
connected (a maximum of 2 parents per node), and hence easier to learn. The most challenging graph
is diabetes [1] due to its large size and large amount of deterministic variables. ENCO makes only
two mistakes showing that it can handle deterministic variables well. On the alarm graph [2], ENCO
consistently misses out one edge. While using a lower regularizer can guarantee a perfect recovery,
it would require more computation time and data. Yet, it is feasible. We conclude that ENCO can
reliably perform structure learning on a wide variety of settings including deterministic variables.

5 Conclusion

In this paper, we propose ENCO, an efficient structure learning method leveraging observational and
interventional data. ENCO models a graph by independent edge likelihoods with the edge orientation
as a separate parameter. As such, ENCO converges to the correct causal graph under mild conditions.
Its objective is unconstrained with respect to acyclicity allowing for low-variance gradient estimators.
In experiments, we show that ENCO can be efficiently applied to graphs comprising hundreds of
nodes, while also handling deterministic variables and possible latent confounders.

Limitations of ENCO include the need for interventional data on all variables. Future work can
investigate how to generalize ENCO to incomplete intervention sets. For instance, despite the
absence of interventions one can still recover undirected edges via �. A second limitation is that the
orientations are missing transitivity: if X1 � X2 and X2 � X3, then X1 � X3 must also be true.
Global order distributions such as Plackett-Luce [21, 31] require high variance gradient estimators
and struggled with chains in early experiments. That said, it would be interesting to experiment with
transitive relations for improving convergence speed and working on incomplete intervention sets.
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Conclusion

• ENCO: method for finding causal relations from observational and interventional data

• Main characteristics of approach:
• Score function unconstrained in terms of acyclicity

• Scalable in both dataset and graph size

• Guarantees for finding the correct graph

• Future work:
• Extension to imperfect/incomplete intervention sets

• Encoding transitivity: if 𝑋# ≻ 𝑋$ and 𝑋$ ≻ 𝑋%, then 𝑋# ≻ 𝑋%

Code available at: https://github.com/phlippe/ENCO
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