Google Developers

Introduction to JAX
with Flax

Phillip Lippe
GDE Amsterdam
@phillip lippe
phlippe.github.io

https://twitter.com/phillip_lippe
https://phlippe.github.io/

Goals of this talk

1) What features are we looking for in an ML/DL framework?
2) What is JAX?

3) What sets JAX apart from other frameworks?

4) How can train Neural Networks in JAX with Flax?

5) Where can | continue my learning journey into JAX with Flax?

€ D> Experts Google Developers

W Explain quantum computing in simple terms

Quantum computing is a type of computing that uses quantum bits, or qubits, instead of
classical bits to store and process information. Unlike classical bits, which can only be in
one of two states (0 or 1), qubits can be in a superposition of both states at the same
time. This allows quantum computers to perform certain types of calculations much more

efficiently than classical computers.

2 o e F . Imagen
DeepMind e) : : e o
Sprouts in the shape of text ‘Imagen’ coming out of a A photo of a Shiba Inu dog with a backpack riding a

fairytale book. bike. It is wearing sunglasses and a beach hat.

ChatGPT Imagen

Secret sauce:
Enormous compute power

TPU Data Center

‘N Experts Google Developers

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.datacenterknowledge.com%2Fgoogle-alphabet%2Fgoogle-brings-liquid-cooling-data-centers-cool-latest-ai-chips&psig=AOvVaw3NPzRDmnokXcz6OCNYxB4z&ust=1670337446766000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCJiOpYPa4vsCFQAAAAAdAAAAABAE

Basic Requirements on a Deep Learning Framework

’ . .3 Automatic
Differentiation

w
A
AN

"
%\k
AN

’

- —- - S S S S S S S S S S S S D S S S S
_____________________’

-—————__‘

‘N Experts Google Developers

https://cloud.google.com/tpu
https://www.nvidia.com/de-de/data-center/a100/

JAX: Accelerated NumPy with Autograd

® Matrix Operations: JAX shares the same basic APl with NumPy

import jax
import jax.numpy as jnp
print("Using jax", jax.__version__)

Using jax 0.3.25

a = jnp.zeros((2, 5), dtype=jnp.float32)
print(a)

‘N Experts Google Developers

JAX: Accelerated NumPy with Autograd

® Accelerator Support: JAX supports operations on various backends, e.g. GPUs

b = jnp.arange(6)
print(b)

(0 12 3 4 5]

b. class_

jaxlib.xla_extension.DeviceArray

t " Tensor by default on accelerator (here GPU)
JAX arrays on CPU are NumPy arrays

‘N Experts Google Developers

JAX: Accelerated NumPy with Autograd

® Automatic Differentiation: JAX allows to transform functions, such as taking
the gradient of a function via jax. grad

def mse_loss(preds, labels):
return ((preds - labels) *x 2).mean()

print('Loss', mse_loss(jnp.array([1.0, 2.0]),
jnp.array([0.0, 1.51)))

Loss 0.625
mse grad fn = jax grad(mse_loss) : : .

jnp. array([0 , 1.51))) (preds - labels)

Loss gradient [1. 0.5]

< < Experts Google Developers

JAX: Function Transformations

® JAXis based on transformations of pure functions

O Pure functions = functions without any side effects, limited to input and outputs

® For this, JAX lifts functions into an intermediate language called jaxpr

exmp_preds = jnp.array([1.0, 2.0])
exmp_labels = jnp.array([0.0, 1.5])

jax.make_jaxpr(mse_loss) (exmp_preds, exmp_labels)

{ lambda ; a:f32[2] b:f32[2] €et—-—= |nputs with evaluated shapes

c:73212] = sub a b
d:f32[2] = integer_powly=2] c : : :
e:f32[] = reduce_sum[axes=(0,)] d Basic function operations
f:f321] = div e 2.0 .
in (f,) Output with evaluated shape
€ D> Experts

Google Developers

JAX: Function Transformations

® JAX offers several function transformations, most importantly:

o jax.grad - Gradient of a function

o jax.jit - Just-In-Time Compilation

o jax.vmap - Vectorize function

o jax.pmap - Parallelize function on multiple devices

€ D> Experts Google Developers

JAX: Just-In-Time Compilation

def mse_loss(x, y):

® Nalve execution of operations can return ((x - y) % 2).mean()

lead to considerable overhead Iin

GPU <~ CPU communication GPU
® Can we do better? i | i RAM :
:) X
® Yes, with Just-In-Time i @ ¥ :
Compilation! | | | 5 :
: 0 : :
: @ L) L :
: Invoke Kernel :

———————————————————————————————————

€ D> Experts Google Developers

JAX: Just-In-Time Compilation

® Just-In-Time (JIT) compilation allows for very efficient code with little effort

® Transforming a function via jax. jit uses XLA (Accelerated Linear Algebra) to
compile multiple operations together to improve speed and memory usage

mse_jit = jax.jit(mse_loss)

%timeit mse_loss(x_batch, y_batch).block until_ready()

434 ps = 13.3 ps per loop (mean * std. dev. of 7 runs, 10

g0 Loops each)

%timeit mse_jit(x_batch, y batch).block until_ready()

58.7 us|* 1.42 ps per loop (mean * std. dev. of 7 runs, 1

50ps each)

€ D> Experts Google Developers

JAX: Just-In-Time Compilation

@jax.jit
def mse_loss(x, y):

® Improves execution speed return ((x - y) #* 2).mean()

(operation fusion, specializing for
shapes)

Just-In-Time
Compllatlon RAM

/ def mse_loss(x,y) /% — X
& : Y
/ mse_loss comp. /@\\ o I L

® Improves memory usage (fewer
intermediate variables)

® Improves portability (any
backend supported in XLA)

<::)<::><::> :,IHMMENMEWEHE"’P .mmmmmmmmmmj

‘________________

€ D> Experts Google Developers

A

JAX: N\ The Sharp Bits \

® JAXrelies on pure functions, which requires function-centric programming

0 Immutable Tensors: in-place operations could have side-effects (JIT may still use in-place ops)

0 Pseudo Random Numbers: seed needs to be passed explicit to functions, no global seed variable

® JIT-Compilation is shape specific, need more care with dynamic shapes
(e.g., graphs or natural language — use padding)

® Debugging in JIT-compiled functions more difficult since compiled functions
can’'t throw an error — potentially undesired side-effects

€ D> Experts Google Developers

Summary

® JAX Is Accelerated NumPy with
Autograd

e Key feature:
transformations of pure functions

e Just-In-Time compilation for taking
full advantage of accelerators

jnp.array([1.0, 2.0])
exmp_labels = jnp.array([0.0, 1.5])

exmp_preds

jax.make_jaxpr(mse_loss) (exmp_preds, exn

{ lambda ; a:f32[2] b:f32[2]. let
c:T3212] = sub a b
d:f32[2] = integer_powly=2] c
e:f32[] reduce_sum[axes=(0,)] d
f:f32[] div e 2.0
in (fp) }

Neural Networks with JAX

® How can we implement an NN in JAX?

® Several libraries available, such as:

[o Flax — Google Brain, focuses on flexibility and Clarity]

o Haiku — DeepMind, focuses on simplicity and compositionality

o Trax — Google Brain, solutions for common training tasks

o Equinox — Patrick Kidger and Cristian Garcia, NNs as callable Pytrees

< s Experts Google Developers

https://flax.readthedocs.io/en/latest/index.html
https://dm-haiku.readthedocs.io/en/latest/
https://github.com/google/trax
https://github.com/patrick-kidger/equinox

Flax: Neural Networks with JAX

® Main aspects of a Neural Network library in JAX:

o How can we implement Neural Network layers as functions? Linen API

© How do we handle parameters (weights, biases, etc.)? Pytrees

0 How do we optimize the model's parameters?

Optax

© How do we put everything together with JIT support? TrainState

€ D> Experts

Google Developers

Flax: Linen AP|

® Flax defines layers as Modules, acting as an immutable dataclass
from flax import linen as nn

class MyModule(nn.Module):

Some dataclass attributes, like hidden dimension
varname : vartype

def setup(self):
Flax uses "lazy" initialization.

In here, define your submodules etc.
pass

def call (self, x):
Function for forward pass
pass

‘N Experts Google Developers

Flax: Linen AP

® Flax defines layers as Modules, acting as an immutable dataclass

class SimpleClassifier(nn.Module):
num_hidden : int # Number of hidden neurons
num_outputs : int # Number of output neurons

def setup(self):
Create the modules we need to build the network
nn.Dense 1s a linear layer
self.linearl = nn.Dense(features=self.num_hidden)
self.linear2 = nn.Dense(features=self.num_outputs)

def call_ (self, x):
Forward pass
self.linearl(x)
nn.tanh(x)
self.linear2(x)
return x

><><><=H=‘

‘N Experts Google Developers

Flax: Linen AP|

® \We can combine sub-module definition and their call via nn.compact:

class SimpleClassifierCompact(nn.Module):
num_hidden : int # Number of hidden neurons
num_outputs : int # Number of output neurons

@nn.compact

def call (self, x):

Forward pass while defining necessary layers
nn.Dense(features=self.num_hidden) (x)
nn.tanh(x)
nn.Dense(features=self.num_outputs) (x)
return Xx

><><><*1=|

‘N Experts Google Developers

Flax: Linen AP|

® Parameters cannot be part of the Module since they must be mutable
® Solution: parameters act as an additional input to the module
® Create parametersviamodule.init function:

example_input = jnp.zeros((16, 2)) w

model = SimpleClassifier(num_hidden=4, num_outputs=1)

model. init(jax.random.PRNGKey(42),
example_input)

params

€ > Experts Google Developers

Flax: Linen AP|

® Parameters are stored as Immutable Pytrees, a tree-structured container

O In Flax, Pytrees are mostly nested dictionaries, with leafs being the parameter values

O Pytrees allow functions to access collections like parameters, and potentially give one as output

® JAX defines several operations on Pytrees, example: print the shapes of the parameters

jax.tree_map(lambda p: p.shape, params)

FrozenDict ({
params: {
linearl:
bias: (4,),
kernel: (2, 4),

Sub-module names

}

linear?2:

s it == Parameters within sub-module

}
}
})

‘N Experts Google Developers

Flax: Linen AP|

® Run a module with parameters viamodule.apply:

example_input = jax.random.normal(jax.random.PRNGKey(0Q),
(4, 2))

model.apply(params, example_input)

DeviceArray([[-0.07297172],
[0.22177655],
[-0.18521681],
[-0.165456]], dtype=float32)

< s Experts Google Developers

Flax: Linen AP|

® Several common network layers have been predefined in the Linen API, such as:
O Linear Layers (nn.Dense, nn.DenseGeneral)
o Convolutions (hn.Conv, nn.ConvTranspose, etc.)
0 Normalizations (nn.BatchNorm, nn.LayerNorm, etc.)
O Attention mechanisms (nn.SelfAttention, etc.)

O Recurrent Neural Networks (nn.LSTMCell, nn.GRUCel1l, etc.)

‘N Experts Google Developers

Flax: Neural Networks with JAX

® Main aspects of a Neural Network library in JAX:

o How can we implement Neural Network layers as functions? Linen AP p

© How do we handle parameters (weights, biases, etc.)? Pytrees Q

0 How do we optimize the model's parameters? Optax

© How do we put everything together with JIT support? TrainState

‘N Experts Google Developers

Optax: NN Optimization in JAX

® Optaxis a gradient processing and optimization library for JAX based on Pytrees

® Provides building blocks and common optimizers (SGD, Adam, etc.) in a similar
function-oriented fashion as Flax

optimizer = optax.adam(learning_rate=1e-3) ——— Immutable dataclass
o o In Adam, momentum and adaptive
opt_state = optimizer.init(params) e :
learning rate parameters
params) parameter updates/changes
Creates a new Pytree with updated
params = optax.apply_updates(params, update) e Y P

parameters

< < Experts Google Developers

Flax: Training APl

® How can we combine the model execution, gradient calculation, and optimizer step,
while allowing for Just-In-Time compilation?

® Flax offers a solution with the flax.training sub-library, in particular: TrainState

O Immutable dataclass with model forward function, parameters, and optimizer (can be extended)

from flax.training.train_state import TrainState
model_state = TrainState.create(apply_fn=model.apply,

params=params,
tx=optimizer)

‘N Experts Google Developers

Flax: Training APl

® A TrainState object can be used as input argument to a function, on which we may apply
function transformations (jax.grad, jax.jit, etc.)

® Example: binary classification

def calculate_loss(state, params, batch):
data_input, labels = batch

logits
logits

loss

loss

return

€ D> Experts

state.apply_fn(params, data_input) G ———

logits.squeeze(axis=-1) Obtain model predictions

optax.sigmoid _binary_cross_entropy({gg é’{ :S €. Calculate loss (error of model)

loss.mean()
loss

Google Developers

Flax: Training API

® Combine everything into a function that executes a whole training step:

Returns both output value (loss) and
G 3 dients for second input argument
(parameters)

grad_fn = jax.value_and_grad(calculate_loss,
argnums=1)

@jax.j1it
def train_step(state, batch):
loss, grads = grad_fn(state, state.params, batch)

state = state.apply_gradients(grads=grads) . CT€3tES NEW Irainstate with updatec
return state, loss optimizer state and parameters

€ D> Experts Google Developers

Flax: Training APl

® To train the model, we can now just write a training loop that calls the training function

several times for different input batches

def train_model(state, data_loader, num_epochs=100):
for epoch in range(num_epochs):
for batch in data_loader:
state, loss = train_step(state, batch)
return state

trained_model state = train_model(model state,
train_data_loader,
num_epochs=100)

€ D> Experts

Google Developers

Flax: Neural Networks with JAX

® Main aspects of a Neural Network library in JAX:

o How can we implement Neural Network layers as functions? Linen AP p

o How do we handle parameters (weights, biases, etc.)? Pytrees b

O How do we optimize the model's parameters? Optax 0

O How do we put everything together with JIT support? TrainState Q

‘N Experts Google Developers

Flax: Neural Networks with JAX

® \What we haven’t discussed yet:
O Logging can be done with external libraries (e.g., TensorBoard)
O Flax supports data loading from any other library (e.g., TensorFlow, PyTorch, etc.)
O Binding parameters to a specific module for easier evaluation
O Automatically vectorizing and/or parallelizing via jax.vmap and jax.pmap
O Writing a research code framework for minimal code overhead

o And much, much more...

€ D> Experts Google Developers

Summary

® Flax is a library for NN tools in JAX

e Using immutable dataclasses for
more object-oriented programming
“feeling”

e Can be combined with several
external libraries for optimization,
logging, data loading, etc.

def calculate_loss(state, params, batch):
data_input, labels = batch

logits = state.apply_fn(params, data_inpu
logits = logits.squeeze(axis=-1)
loss = optax.sigmoid_binary_cross_entropy

loss = loss.mean()
return loss

grad_fn = jax.value_and_grad(calculate_loss,
argnums=1)

@jax.jit
def train_step(state, batch):
loss, grads = grad_fn(state, state.params,

state = state.apply_gradients(grads=grads)
return state, loss

When and why to use JAX with Flax®

Benefits Drawbacks

e JAX is extremely fast with Just-In-Time e T[he code overhead is usually larger than in
compilation other frameworks

e Function transformations are powerful tools to e Not as user-friendly / fail-safe as other
easlly parallelize and vectorize your code frameworks

e Function-oriented programming is helpful in e Handling dynamic shapes can be annoying
areas like meta-learning, where one needs e Community still considerably smaller than e.g.
explicit gradients TensorFlow or PyTorch

Recommendation: if you are doing research and want to get maximum
performance out of your code, give JAX a try!

‘N Experts Google Developers

Goals of this talk

1) What features are we looking for in an ML/DL framework?
2) What is JAX?

3) What sets JAX apart from other frameworks?

4) How can train Neural Networks in JAX with Flax?

5) Where can | continue my learning journey into JAX with Flax?

€ D> Experts Google Developers

Further resources on JAX with Flax

® The JAX and Flax documentations have great introduction tutorials

® |f you are interested in seeing JAX with Flax used in practice, and learn new methods in

& Tutorial 2 (JAX): Introduction to
JAX+Flax

=) JAX as NumPy on accelerators
“) Function transformations with Jaxpr

= Implementing a Neural Network with
Flax

The Fancy Bits
¥ The Sharp Bits .
Tutorial 3 (JAX): Activation Functions

Tutorial 4 (JAX): Optimization and
Initialization

Tutorial 5 (JAX): Inception, ResNet and
DenseNet

Tutorial 6 (JAX): Transformers and Multi-
Head Attention

Tutorial 7 (JAX): Graph Neural Networks

Deep Learning, check out our UvA Deep Learning tutorials!

Tutorial 2 (JAX): Introduction to JAX+Flax

Status | Finished
HELCITGE L O Repo [View On Github | O Open in Colab

Author: Phillip Lippe

Welcome to our JAX tutorial for the Deep Learning course at the University of Amsterdam! The following notebook is meant to give a short
introduction to JAX, including writing and training your own neural networks with Flax. But why should you learn JAX, if there are already so
many other deep learning frameworks like PyTorch and TensorFlow? The short answer: because it can be extremely fast. For instance, a small
GoogleNet on CIFAR10, which we discuss in detail in Tutorial 5, can be trained in JAX 3x faster than in PyTorch with a similar setup. Note that for
larger models, larger batch sizes, or smaller GPUs, a considerably smaller speedup is expected, and the code has not been designed for
benchmarking. Nonetheless, JAX enables this speedup by compiling functions and numerical programs for accelerators (GPU/TPU) just in time,
finding the optimal utilization of the hardware. Frameworks with dynamic computation graphs like PyTorch cannot achieve the same efficiency,
since they cannot anticipate the next operations before the user calls them. For example, in an Inception block of GoogleNet, we apply multiple
convolutional layers in parallel on the same input. JAX can optimize the execution of this layer by compiling the whole forward pass for the
available accelerator and fusing operations where possible, reducing memory access and speeding up execution. In contrast, when calling the first
convolutional layer in PyTorch, the framework does not know that multiple convolutions on the same feature map will follow. It sends each

slopers

https://jax.readthedocs.io/en/latest/index.html
https://flax.readthedocs.io/en/latest/getting_started.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/JAX/tutorial2/Introduction_to_JAX.html

Google Developers

€ D Experts
Slides
(personal website)
Thank You! o
Phillip Lippe : . :
GDE Amsterdam
@phillip lippe

ohlippe.github.io

https://twitter.com/phillip_lippe
https://phlippe.github.io/

