
Introduction to JAX 
with Flax

Phillip Lippe
GDE Amsterdam
@phillip_lippe
phlippe.github.io

https://twitter.com/phillip_lippe
https://phlippe.github.io/


Goals of this talk

1) What features are we looking for in an ML/DL framework?
2) What is JAX?
3) What sets JAX apart from other frameworks?
4) How can train Neural Networks in JAX with Flax?
5) Where can I continue my learning journey into JAX with Flax?



Successes of Machine and Deep Learning

AlphaFold ChatGPT Imagen

Secret sauce: 
Enormous compute power 

TPU Data Center How can we make efficient use of the 
compute power? => DL frameworks

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.datacenterknowledge.com%2Fgoogle-alphabet%2Fgoogle-brings-liquid-cooling-data-centers-cool-latest-ai-chips&psig=AOvVaw3NPzRDmnokXcz6OCNYxB4z&ust=1670337446766000&source=images&cd=vfe&ved=0CBEQjhxqFwoTCJiOpYPa4vsCFQAAAAAdAAAAABAE


Basic Requirements on a Deep Learning Framework 

Accelerator support

Matrix operations

TPU v4GPUs (NVIDIA A100)

Automatic 
Differentiation

Gradients

https://cloud.google.com/tpu
https://www.nvidia.com/de-de/data-center/a100/


JAX: Accelerated NumPy with Autograd

● Matrix Operations: JAX shares the same basic API with NumPy



JAX: Accelerated NumPy with Autograd

● Accelerator Support: JAX supports operations on various backends, e.g. GPUs

Tensor by default on accelerator (here GPU)
JAX arrays on CPU are NumPy arrays



JAX: Accelerated NumPy with Autograd

● Automatic Differentiation: JAX allows to transform functions, such as taking 
the gradient of a function via jax.grad

Analytical gradient:
(preds – labels)



JAX: Function Transformations

● JAX is based on transformations of pure functions
○ Pure functions = functions without any side effects, limited to input and outputs

● For this, JAX lifts functions into an intermediate language called jaxpr

Inputs with evaluated shapes

Basic function operations

Output with evaluated shape



JAX: Function Transformations

● JAX offers several function transformations, most importantly:

○ jax.grad – Gradient of a function

○ jax.jit – Just-In-Time Compilation

○ jax.vmap – Vectorize function

○ jax.pmap – Parallelize function on multiple devices



JAX: Just-In-Time Compilation

CPU GPU

X
Y

RAMX Y

X-Y

(X-Y)2

𝓛

a
b
𝓛

Invoke Kernel

Invoke Kernel

Invoke Kernel

● Naïve execution of operations can 
lead to considerable overhead in 
GPU ↔ CPU communication

● Can we do better?

● Yes, with Just-In-Time 
Compilation!



JAX: Just-In-Time Compilation

● Just-In-Time (JIT) compilation allows for very efficient code with little effort

● Transforming a function via jax.jit uses XLA (Accelerated Linear Algebra) to 
compile multiple operations together to improve speed and memory usage



JAX: Just-In-Time Compilation

CPU GPU

X
Y

RAM

X Y 𝓛

𝓛

Invoke MSE Kernel

● Improves execution speed 
(operation fusion, specializing for 
shapes)

● Improves memory usage (fewer 
intermediate variables)

● Improves portability (any 
backend supported in XLA)

def mse_loss(x,y)

Just-In-Time 
Compila2on

mse_loss comp.



JAX: 🔪 The Sharp Bits 🔪

● JAX relies on pure functions, which requires function-centric programming

○ Immutable Tensors: in-place operations could have side-effects (JIT may still use in-place ops)

○ Pseudo Random Numbers: seed needs to be passed explicit to functions, no global seed variable

● JIT-Compilation is shape specific, need more care with dynamic shapes 
(e.g., graphs or natural language – use padding)

● Debugging in JIT-compiled functions more difficult since compiled functions 
can’t throw an error → potentially undesired side-effects



Summary
● JAX is Accelerated NumPy with 

Autograd

● Key feature:
transformations of pure functions

● Just-In-Time compilation for taking 
full advantage of accelerators



Neural Networks with JAX

● How can we implement an NN in JAX? 

● Several libraries available, such as:

○ Flax – Google Brain, focuses on flexibility and clarity

○ Haiku – DeepMind, focuses on simplicity and compositionality

○ Trax – Google Brain, solutions for common training tasks

○ Equinox – Patrick Kidger and Cristian Garcia, NNs as callable Pytrees

https://flax.readthedocs.io/en/latest/index.html
https://dm-haiku.readthedocs.io/en/latest/
https://github.com/google/trax
https://github.com/patrick-kidger/equinox


Flax: Neural Networks with JAX

● Main aspects of a Neural Network library in JAX:

○ How can we implement Neural Network layers as functions?

○ How do we handle parameters (weights, biases, etc.)?

○ How do we optimize the model’s parameters?

○ How do we put everything together with JIT support?

Linen API

Pytrees

Optax

TrainState



Flax: Linen API

● Flax defines layers as Modules, acting as an immutable dataclass



Flax: Linen API

● Flax defines layers as Modules, acting as an immutable dataclass



Flax: Linen API

● We can combine sub-module definition and their call via nn.compact:



Flax: Linen API

● Parameters cannot be part of the Module since they must be mutable

● Solution: parameters act as an additional input to the module

● Create parameters via module.init function:



Flax: Linen API

● Parameters are stored as Immutable Pytrees, a tree-structured container
○ In Flax, Pytrees are mostly nested dictionaries, with leafs being the parameter values

○ Pytrees allow functions to access collections like parameters, and potentially give one as output

● JAX defines several operations on Pytrees, example: print the shapes of the parameters

Sub-module names

Parameters within sub-module



Flax: Linen API

● Run a module with parameters via module.apply:



Flax: Linen API

● Several common network layers have been predefined in the Linen API, such as:

○ Linear Layers (nn.Dense, nn.DenseGeneral)

○ Convolutions (nn.Conv, nn.ConvTranspose, etc.)

○ Normalizations (nn.BatchNorm, nn.LayerNorm, etc.)

○ Attention mechanisms (nn.SelfAttention, etc.)

○ Recurrent Neural Networks (nn.LSTMCell, nn.GRUCell, etc.)



Flax: Neural Networks with JAX

● Main aspects of a Neural Network library in JAX:

○ How can we implement Neural Network layers as functions?

○ How do we handle parameters (weights, biases, etc.)?

○ How do we optimize the model’s parameters?

○ How do we put everything together with JIT support?

Linen API

Pytrees

Optax

TrainState



Optax: NN Optimization in JAX

● Optax is a gradient processing and optimization library for JAX based on Pytrees

● Provides building blocks and common optimizers (SGD, Adam, etc.) in a similar 
function-oriented fashion as Flax

In Adam, momentum and adaptive 
learning rate parameters

Immutable dataclass

Update momentum etc., and get 
parameter updates/changes

Creates a new Pytree with updated 
parameters



Flax: Training API

● How can we combine the model execution, gradient calculation, and optimizer step, 
while allowing for Just-In-Time compilation?

● Flax offers a solution with the flax.training sub-library, in particular: TrainState

○ Immutable dataclass with model forward function, parameters, and optimizer (can be extended)



Flax: Training API

● A TrainState object can be used as input argument to a function, on which we may apply 
function transformations (jax.grad, jax.jit, etc.)

● Example: binary classification

Obtain model predictions

Calculate loss (error of model)



Flax: Training API

● Combine everything into a function that executes a whole training step:

Returns both output value (loss) and 
gradients for second input argument 

(parameters)

Creates new TrainState with updated 
optimizer state and parameters



Flax: Training API

● To train the model, we can now just write a training loop that calls the training function 
several times for different input batches



Flax: Neural Networks with JAX

● Main aspects of a Neural Network library in JAX:

○ How can we implement Neural Network layers as functions?

○ How do we handle parameters (weights, biases, etc.)?

○ How do we optimize the model’s parameters?

○ How do we put everything together with JIT support?

Linen API

Pytrees

Optax

TrainState



Flax: Neural Networks with JAX

● What we haven’t discussed yet:

○ Logging can be done with external libraries (e.g., TensorBoard)

○ Flax supports data loading from any other library (e.g., TensorFlow, PyTorch, etc.)

○ Binding parameters to a specific module for easier evaluation

○ Automatically vectorizing and/or parallelizing via jax.vmap and jax.pmap

○ Writing a research code framework for minimal code overhead

○ And much, much more…



Summary
● Flax is a library for NN tools in JAX

● Using immutable dataclasses for
more object-oriented programming 
“feeling”

● Can be combined with several 
external libraries for optimization, 
logging, data loading, etc. 



When and why to use JAX with Flax?

Benefits
● JAX is extremely fast with Just-In-Time 

compilation
● Function transformations are powerful tools to 

easily parallelize and vectorize your code
● Function-oriented programming is helpful in 

areas like meta-learning, where one needs 
explicit gradients

Drawbacks
● The code overhead is usually larger than in 

other frameworks
● Not as user-friendly / fail-safe as other 

frameworks
● Handling dynamic shapes can be annoying
● Community still considerably smaller than e.g. 

TensorFlow or PyTorch

Recommendation: if you are doing research and want to get maximum 
performance out of your code, give JAX a try!



Goals of this talk

1) What features are we looking for in an ML/DL framework?
2) What is JAX?
3) What sets JAX apart from other frameworks?
4) How can train Neural Networks in JAX with Flax?
5) Where can I continue my learning journey into JAX with Flax?



Further resources on JAX with Flax

● The JAX and Flax documentations have great introduction tutorials

● If you are interested in seeing JAX with Flax used in practice, and learn new methods in
Deep Learning, check out our UvA Deep Learning tutorials!

https://jax.readthedocs.io/en/latest/index.html
https://flax.readthedocs.io/en/latest/getting_started.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/JAX/tutorial2/Introduction_to_JAX.html


Thank You!
Phillip Lippe
GDE Amsterdam
@phillip_lippe
phlippe.github.io

Slides
(personal website)

https://twitter.com/phillip_lippe
https://phlippe.github.io/

