Intervention

Design

Representation

Learning

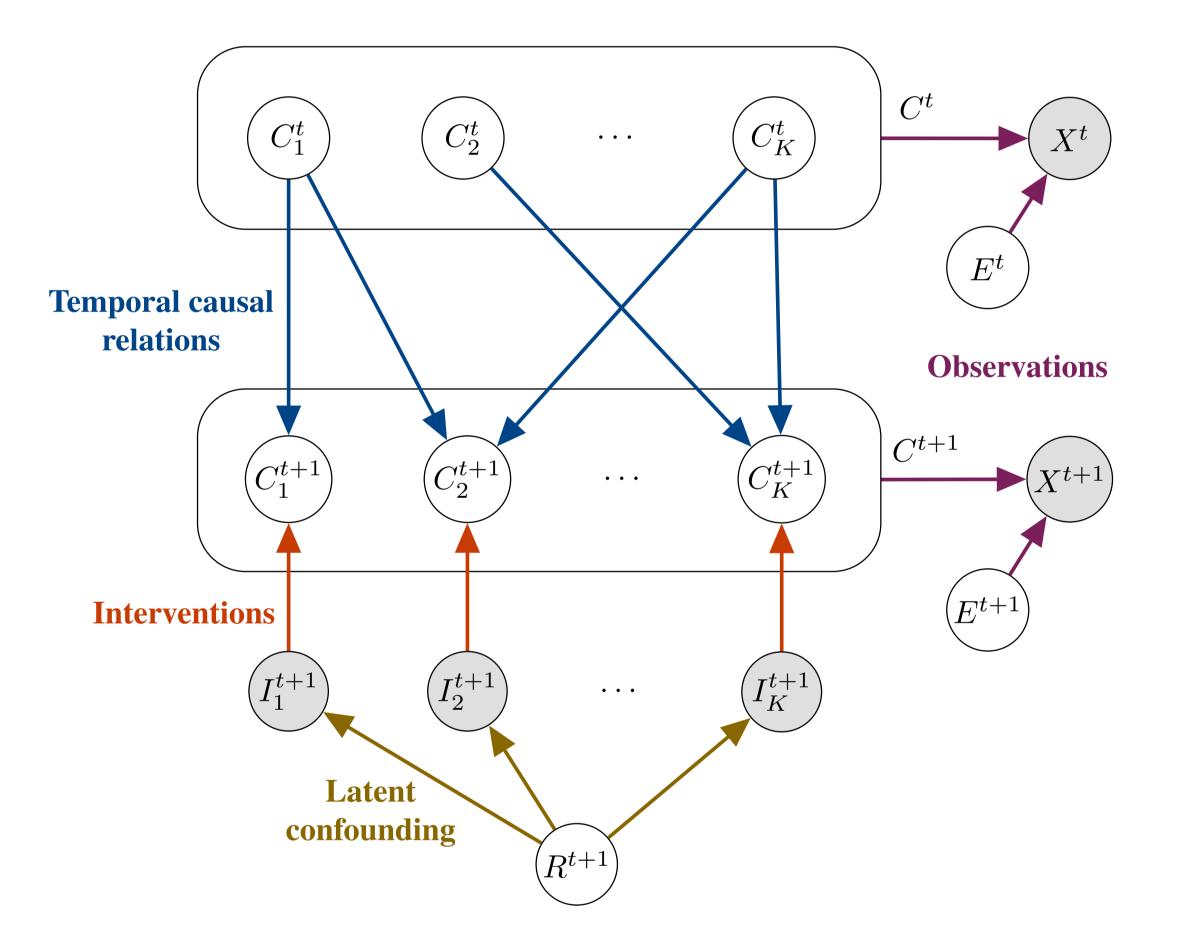
Intervention Design for Causal Representation Learning

Phillip Lippe¹ (p.lippe@uva.nl), Sara Magliacane^{1,2}, Sindy Löwe¹, Yuki M. Asano¹, Taco Cohen³, Efstratios Gavves¹

¹University of Amsterdam, Informatics Institute, ²MIT-IBM Watson AI Lab, ³Qualcomm AI Research, The Netherlands Ш

PROBLEM SETTING

- *Experiment:* Set of variables that are simultaneously intervened \bullet
- Intervention Design for Causal Discovery: $\lfloor \log_2 K \rfloor + 1$ experiments for *K* known variables identify the causal graph (worst case) [1]
- CITRIS [2]: Causal variables are identifiable from videos with ulletinterventions if intervention targets are not deterministic functions of each other \Rightarrow How many experiments are necessary?

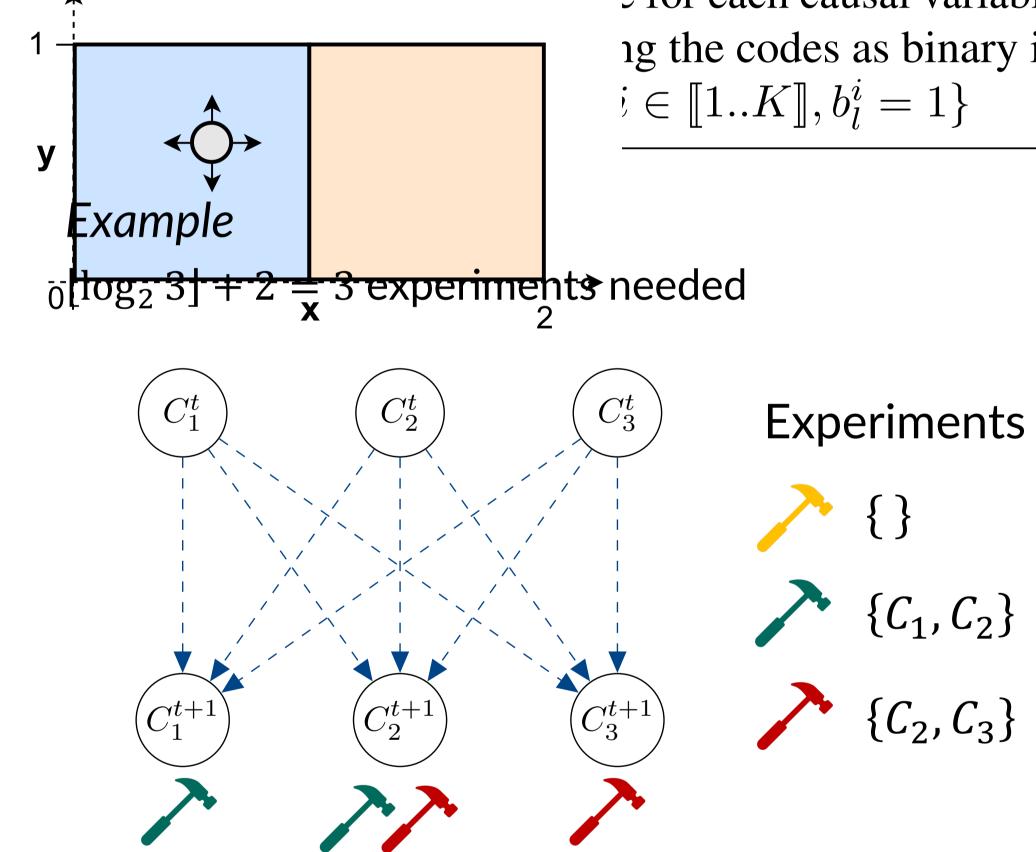


ALGORITHM

Require: Number of variables K

- 1: Create all possible binary codes of length L = $|\log_2(K)| + 1$ as set $\mathcal{B} = \{0, 1\}^L$
- 2: Remove the code of observing a variable passively in all experiments, $\{0\}^L$, from \mathcal{B}
- 3: Extend all codes in \mathcal{B} by appending $\{0\}$, *i.e.* an experiment where all variables are passively observed

4: From the remaining codes in \mathcal{B} , (arbitrarily) pick K



e for each causal variable C_i ig the codes as binary inter-

METHOD

- Four conditions: Each variable must be observed (1) passively lacksquareand (2) intervened at least once, and for each pair of variables, the targets cannot be (3) equal or (4) different at *all* time steps
- Derivation by considering targets as binary codes, and results: lacksquare

 $\lfloor \log_2 K \rfloor + 2$ experiments identify the minimal causal variables

EXPERIMENTS

- Temporal Causal3DIdent with 6 variables
 - $\Rightarrow [\log_2 6] + 2 = 4$ experiments necessary
- CITRIS with minimal experiments is close to full \bullet set of experiments in disentanglement

Experimental setting	Triplets \downarrow	R^2 diag \uparrow	$R^2 \operatorname{sep} \downarrow$
iVAE - Full experiments	$0.15~(\pm 0.01)$	0.78 (±0.04)	0.21 (±0.10)

References

[1] Hyttinen, Antti, Frederick Eberhardt, and Patrik O. Hoyer. "Experiment selection for causal discovery." Journal of Machine Learning Research 14 (2013): 3041-3071. [2] Lippe, Phillip, et al. "CITRIS: Causal Identifiability from Temporal Intervened Sequences." International Conference on Machine Learning. PMLR, 2022.

CITRIS - Full experiments $0.04 \ (\pm 0.00)$ $0.98 (\pm 0.00)$ $0.01 \ (\pm 0.00)$

 $0.12 \ (\pm 0.02)$ CITRIS - Minimal experiments $0.94 \ (\pm 0.05)$ $0.08 \ (\pm 0.05)$

