
PROBLEM SETTING
• Experiment: Set of variables that are simultaneously intervened
• Intervention Design for Causal Discovery: log! 𝐾 + 1 experiments

for 𝐾 known variables identify the causal graph (worst case) [1]
• CITRIS [2]: Causal variables are identifiable from videos with

interventions if intervention targets are not deterministic
functions of each other ⇒ How many experiments are necessary?
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Consider, for example, two variables C1, C2, for which we
have four possible binary codes: {00, 01, 10, 11}. Removing
the code for a variable being always passively observed, 00,
and the code for a variable always being intervened, 11, we
are left with the dlog2(2 + 2)e = 2 codes {01, 10}.

In a second step, we need to extend this bound to fulfill
condition 4, i.e. for all pairs Ci, Cj , there exists an exper-
iment for which Ii = Ij holds. In other words, we need
to prevent that bi = ¬bj for any i, j, with ¬b representing
the one’s complement of a binary code b. In the example
above, this implies that we cannot use the codes b

1 = 01
and b

2 = 10 for C1, C2, since b
1 = ¬b2. More generally,

any subset of more than 2L�1 unique codes of length L

must contain a pair bi, bj for which b
i = ¬bj . Hence, we

effectively need to double the previous number of codes
to ensure that there exist a subset of K unique codes that
are not complementary to each other. Note, however, that
this does not affect the two constant codes, all zeros and
all ones, since they are invalid in any code space and
are the inverse of each other. Hence, the minimal code
length to find K binary codes that are (1) unique, (2) non-
constant, and (3) not complementarities of each others, is
dlog2(2K + 2)e = dlog2(K + 1)e+ 1 = blog2(K)c+ 2.1
This bound simultaneously corresponds to the minimal
number of experiments needed to fulfill the conditions 1-4,
which we summarize in the following proposition:

Proposition 3.2. The minimal number of experiments
to fulfill the identifiability condition of Equation (2) is
blog2(K)c + 2, with K being the number of causal vari-
ables.

One way of preventing codes from being complementary
to each other is to add the purely observational regime,
i.e. E0 = ;, to an experimental set that already fulfills
conditions 1-3. This ensures that there exist an experiment
El for which Ci, Cj 62 El and thus bil = b

j
l for all pairs.

A simple algorithm for creating such sets of experiments
is shown in Algorithm 1. Taking again the example of two
variables C1, C2, we first create all binary codes of length
blog2(2)c + 1 = 2: B = {00, 01, 10, 11} (i.e. one ex-
periment less than the bound, since we add the observa-
tional experiment later). We then remove the code for pas-
sively observing a specific causal variable in all experiments:
B \ {00} = {01, 10, 11}. Next, we add the experiment in
which all causal variables are jointly, passively observed:
B = {001, 010, 011}. From these three codes, we pick two
codes for the two causal variables C1, C2. Note that any
combination of two codes from B is valid, and we could
pick them based on some heuristic, for instance minimizing
the number of interventions: b1 = 001, b2 = 010. We then
create the blog2(2)c + 2 = 3 experiments based on these
codes: E1 = ;, E2 = {C2}, E3 = {C1}.

1These equalities are possible, since we have K 2 N, i.e. the
number of causal variables is a positive integer greater than zero.

Algorithm 1 Pseudocode for finding a minimal set of exper-
iments that enable the identification of the minimal causal
variables with an observational regime.
Require: Number of variables K

1: Create all possible binary codes of length L =
blog2(K)c+ 1 as set B = {0, 1}L

2: Remove the code of observing a variable passively in
all experiments, {0}L, from B

3: Extend all codes in B by appending {0}, i.e. an experi-
ment where all variables are passively observed

4: From the remaining codes in B, (arbitrarily) pick K

unique codes b1, ..., bK , one for each causal variable Ci

5: Create experiments by using the codes as binary inter-
vention targets: El = {Ci|i 2 J1..KK, bil = 1}

In conclusion, we have shown that we can guarantee to find
the minimal causal variables of a set of causal variables
C1, ..., CK with as little as blog2(K)c+ 2 experiments, of
which one can always be the observational regime. Further-
more, the results generalize to iCITRIS (Lippe et al., 2022a),
a recent extension of CITRIS to instantaneous effects, when
considering perfect interventions, since both rely on the
same intervention condition of Equation (2). In comparison
to the bound derived by Eberhardt (2007) for causal discov-
ery (blog2(K)c+ 1) in the worst case scenario, we require
just exactly one additional experiment to identify the mini-
mal causal variables. Despite the different setups and goals
in causal representation learning and causal discovery, the
similarity of the two bounds suggests that we can poten-
tially use similar extensions of the causal discovery domain,
with minimal adjustments, for causal representation learn-
ing, since we may only have to add one more experiment.
Such extensions include, for example, limiting the number
of simultaneous interventions (Hyttinen et al., 2013) or se-
lecting the cheapest set of experiments according to some
cost function (Ghassami et al., 2018; Kocaoglu et al., 2017a;
Lindgren et al., 2018).

4 EXPERIMENTS

To verify that CITRIS can operate in a limited experimental
setting, we repeat the experiments of Lippe et al. (2022b) on
the Temporal Causal3DIdent dataset, but with a smaller set
of interventions. The Temporal Causal3DIdent dataset con-
sists of 3D renderings (64⇥ 64 pixels) of an object shape
under varying positions, rotations, and lights. For simplicity,
we fix the shape to a teapot, which leaves six causal variables
that causally interact over time. Using our bound derived in
Section 3.3, we obtain that blog2(6)c+ 2 = 4 intervention
experiments are sufficient to identify the variables of the
Temporal Causal3DIdent Teapot dataset. Hence, we sam-
ple four intervention experiments following Algorithm 1,
and show one example of the experiment set in Table 2. The

Table 1: Results on the Temporal Causal3DIdent dataset with different experimental settings over three seeds. Full
experiments denotes the setting with full support over all possible intervention experiments (i.e., It+1

i ⇠ Bernoulli(0.1),
results taken from Lippe et al. (2022b)), and minimal experiments follow minimal sets of experiments (ours). R2 diag and
Spearman diag measure the correlation between a causal variable and the latent variables assigned to it by CITRIS. R2 sep and
Spearman sep denote the maximum correlation to any other causal variable. The triplet distance measures the disentanglement
by testing the generation of new combinations of causal factors (see Lippe et al. (2022b) for detailed descriptions).

Experimental setting Triplets # R
2 diag " R

2 sep # Spearman diag " Spearman sep #

iVAE - Full experiments 0.15 (±0.01) 0.78 (±0.04) 0.21 (±0.10) 0.77 (±0.05) 0.17 (±0.04)
CITRIS - Full experiments 0.04 (±0.00) 0.98 (±0.00) 0.01 (±0.00) 0.97 (±0.00) 0.05 (±0.01)

CITRIS - Minimal experiments 0.12 (±0.02) 0.94 (±0.05) 0.08 (±0.05) 0.92 (±0.08) 0.10 (±0.05)

Table 2: An example of the selected experiments under
the minimal number of experiments setting, generated ac-
cording to Algorithm 1. E1 is the observational regime,
and E2, E3, E4 create unique intervention patterns for each
causal variable.

E1 E2 E3 E4

pos_o - X - X
rot_o - - X -
rot_s - - X X

hue_o - X X -
hue_b - - - X
hue_s - X - -

first experiment, E1, is the observational regime where all
variables are passively observed, and the other experiments
E2, E3, E4 cover the needed interventions. The data is gen-
erated following the same process as in Lippe et al. (2022b).
For the regime variable, we sample the purely observational
experiment E1 50% of the time, and uniformly between
E2, E3, E4 otherwise. Hence, we obtain samples from all
experiments, with a bias towards observational data, since
this is usually cheaper to obtain.

In Table 1, we show the results of CITRIS on the Tempo-
ral Causal3DIdent dataset under different experimental set-
tings. The setting “full experiments” is the original setup
of Lippe et al. (2022b), where the intervention targets are
independently sampled from a Bernoulli distribution, i.e.
I
t+1
i ⇠ Bernoulli(0.1). Hence, we effectively obtain sam-

ples from all possible experiments. In contrast, the setting
“minimal experiments” only uses four experiments, as de-
scribed before. We repeat all experiments with three differ-
ent seeds and three different minimal sets of experiments
(see Appendix A.1 for the specific sets). The results on the
minimal experiment set show that CITRIS is still able to
disentangle the causal variables decently, with small degra-
dation in performance compared to the full experiments. In
general, we find that the model is more likely to entangle
variables with a very similar intervention pattern due to pos-
sible local minima. For example, for the set of experiments

in Table 2, one model seed entangled the background hue
(hue_b) and the object position (pos_o), which, in terms of
interventions, only differ in experiment E2. Still, CITRIS
under a minimal set of experiments considerably outper-
forms the best baseline model, an iVAE (Khemakhem et al.,
2020a), on a full set of experiments. In conclusion, CITRIS
can identify the causal variables even under a minimal set
of experiments well, but it is more challenging to optimize
due to strong dependencies between intervention targets.

5 CONCLUSION

In this paper, we show that blog2(K)c+ 2 intervention ex-
periments are sufficient to identify K causal variables from
high-dimensional observations like images for the causal
representation learning method CITRIS. This bound has
a strong resemblance to the bound in intervention design,
which guarantees the discovery of a causal graph for known
variables in just one experiment less than in the bound
we present. Further, we empirically verify this bound by
showing that CITRIS with a minimal set of four experi-
ments disentangles the six causal variables of the Temporal
Causal3DIdent dataset almost as well as with an unlimited
number of experiments. This suggests that adapting further
methods from the field of intervention design to causal rep-
resentation learning holds promise for future work, and the
presented work can provide a first step towards this goal.
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Figure 2. An example causal graph in TRIS, with observed vari-
ables shown in gray and latent variables in white. A latent causal
factor Ct+1

i has as parents a subset of the causal factors at the pre-
vious time step Ct

1, . . . , C
t
K , and its intervention target It+1

i . All
causal variables Ct+1 and noise Et+1 cause the observation Xt+1.
Rt+1 is a latent confounder between the intervention targets.

Multidimensional Causal Factors: As opposed to most
work on causal representation learning, which considers
causal factors to be one-dimensional (Khemakhem et al.,
2020a; Klindt et al., 2021; Lachapelle et al., 2022), we
allow them to be potentially multidimensional, i.e., Ci 2
DMi

i with Mi � 1 and in practice we let Di be R for
continuous variables (e.g., spatial position), Z for discrete
variables (e.g., the score of a player) or mixed. This allows
modeling different levels of causal variables (e.g. a 2D-
position encoded in a single factor with two dimensions
instead of two different causal factors). We define the causal
factor space as C = DM1

1 ⇥ DM2
2 ⇥ ... ⇥ DMK

K .

Observation Function: We define the observation func-
tion h(Ct

1, C
t
2, ..., C

t
K , E

t
o) = X

t, where E
t
o represents any

noise independent of the causal factors that influence the
observations, and h : C ⇥ E ! X is a function from the
causal factor space C and the space of the noise variables
E to the observation space X . We assume that h is bijec-
tive, implying that the joint dimensionality of the noise and
causal model is limited to the image size. This allows us to
identify each causal factor uniquely from observations by
learning an approximation of f , while disregarding irrele-
vant features in the observation space.

Availability of Intervention Targets: Crucially, we assume
that in each time-step some causal factors might (or might
not) have been intervened upon and that we have access to
the corresponding intervention targets, but not the interven-
tion values. We denote these intervention targets by the bi-
nary vector I

t 2 {0, 1}K where I
t
i = 1 refers to an inter-

vention on the causal variable C
t
i .
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Figure 3. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes (blue
and orange) through an intervention, which does not influence the
relative position within a box.

3.2. A Necessary Condition for Disentanglement in TRIS

In TRIS, we generally cannot disentangle two causal factors
if they are always intervened upon jointly, or, on the contrary,
if they are never intervened upon.

Proposition 3.1. In TRIS, if two causal factors Ci and Cj

have only been jointly intervened on or not at all, then there
exists a causal graph in which Ci and Cj cannot be uniquely
identified from observations X and intervention targets I .

We provide an example of such a graph in Figure 3, where
a ball can move in two dimensions, x and y. If both x and
y follow a Gaussian distribution with stationary variances
over time, then any two orthogonal axes can describe the
distribution equally well (Belouchrani et al., 1997; Hyvari-
nen & Morioka, 2017), making it impossible to uniquely
identify them without interventions. Similarly, if we only
observe joint interventions on x, y together, we cannot iden-
tify them either due to the same reasoning. We include the
proof for this proposition in Appendix B.6.

Additionally, in TRIS where the latent causal factors may
correspond to multidimensional vectors, we cannot even
completely reconstruct said factors, when by the nature of
the system the provided interventions leave some of the
causal factor’s dimensions unaffected. In the next section,
we will instead introduce the concept of minimal causal
variables to characterize what we can identify instead.

3.3. Minimal Causal Variables

To visualize this scenario, consider again the example in
Figure 3 with a ball in one of two boxes. Over time, the
ball can move freely within the box it is currently in, but it
can only jump into another box if there is an intervention.
The intervention moves the ball to the other box, but keeps
the relative position of the ball within the box intact. While
one could define this process by a single causal variable x

over time, it can also be described by two causal variables:
the relative position within the box x

0 and the current box b.
Since only b is affected by the intervention, and we consider
causal factors to potentially be multidimensional, we could

METHOD
• Four conditions: Each variable must be observed (1) passively

and (2) intervened at least once, and for each pair of variables,
the targets cannot be (3) equal or (4) different at all time steps

• Derivation by considering targets as binary codes, and results:

EXPERIMENTS
• Temporal Causal3DIdent with 6 variables

⇒ log! 6 + 2 = 4 experiments necessary
• CITRIS with minimal experiments is close to full 

set of experiments  in disentanglement

𝐥𝐨𝐠𝟐𝑲 + 𝟐 experiments identify the minimal causal variables
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Example
log! 3 + 2 = 3 experiments needed

Experiments
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