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Causal Representation Learning

* Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?
e Causal variables
e Their cause-effect relations

Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 4



Causal Representation Learning

* Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?
e Causal variables
e Their cause-effect relations

Timet+ 1

Learning Causal Variables from Temporal Observations - Phillip Lippe Slide 5



CITRIS: Causal Identifiability from Temporal Intervened Sequences
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CITRIS Architecture
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CITRIS Architecture
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CITRIS Experiments
Pong

* CITRIS identifies the causal variables accurately

* |dentified cause-effect relations closely follow ground truth
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CITRIS Experiments
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Causal Representation Learning for Instantaneous Effects
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summary

* Causal Representation Learning aims to learn generalizable, robust representations of causal
variables in an environment

* CITRIS identifies causal variables in variety of environments by information about interventions
* Allows for interpretable, controllable latent spaces

e Opportunity for learning representations in complex,
interactive environments like Embodied Al
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