

Learning Causal Variables from Temporal Observations

Phillip Lippe PhD Student, University of Amsterdam

21. February 2023

Introduction Representation Learning

Vision

Not interpretable Unknown robustness

• • •

Figure credits: [1] Waymo tech block, 2017 [2] Cordts et al., The Cityscapes dataset. CVPR 2016.

Introduction **Representation Learning**

Vision

Structured Representation AD: Human guidance what to model, causal factors

Figure credits: [1] Waymo tech block, 2017 [2] Cordts et al., The Cityscapes dataset. CVPR 2016.

Learning Causal Variables from Temporal Observations - Phillip Lippe

Causal Representation Learning

- Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?
 - Causal variables
 - Their cause-effect relations

Causal Representation Learning

- Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?
 - Causal variables
 - Their cause-effect relations

CITRIS: Causal Identifiability from Temporal Intervened Sequences Setup

CITRIS Architecture **CITRIS-VAE**

 I^{t+1}

 x^t

1 0 0 1

0:0_

 x^{t+1}

069 **Causal structure assumptions:** We assume that the un-

070 derlying latent causal process is an unobserved dynamic

Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,

2002)) over the random variables $(C_1, C_2, ..., C_K)$ with no

instantaneous effect and first-order Markov (i.e. the causal

parents of a factor at time t can only be in the previous

z

 $p_{\phi}(z^{t+1}|z^t, I^{t+1})$

Latent to causal

variable assignment

 $= \prod p_{\phi} \left(z_{\Psi_i}^{t+1} | z^t, I_i^{t+1} \right)$

075 time step t-1), for

071

072

073

074

077

083

084

085

087

088

089

094

095

Encoder q_{θ}

076 (i.e. the time serie

assume that the c 078 there are no additi

Encoder q_{θ} Availability of int

> sume in each time intervened targets. We vector I^t

on the causal variable argensition/prior prior state: $I_i^t \perp I_i^t | C_1$

In this setup we tan model interventions with an arbitrary number of targets, including the empty s 0:0_ data). Moreover, it can model both *perfect* which the target variable becomes indepen parents) and soft interventions (in which on distribution $P(C_i | pa(C_i))$ of the target C_i $pa(C_i)$ changes). \hat{x}^{t+1}

 $,..., \cup_K$.

096 **Observation assumptions:** We assume that each latent 097 causal factors can be uniquely identified from the observa-098 Learning Causal Variable tions, Temphere exists a surjective mapions XPhilic Ifrom the charaction areas $\mathcal{V} \subset \mathbb{D}N$ to the second factor areas \mathcal{C}

004 variables (

t+1 respectively, and I^{t+1} describes the in at time step t + 1. We aim to leave a spring from observations to a latent space, observations gling the different causal factors. Thereby latent space to be larger than the Causalist i.e. $\mathcal{Z} \subseteq \mathbb{R}^M, M \geq K$, such that yanging can be modeled in multiple late Bradiniansi the encoding of multidimensionaddagoorse

ocess. Since somercarie al factors with among cat s when modelied enterpot up, we model apthoah $p_{\phi}(z^{\dagger})^{\dagger}z^{D}$, as the vit iables for xtomerer are m s a disentanglement ov nt variable of vailabilit rtsume in ea \mathcal{R}^{t} intervened $085 \, {}^{i} \hat{x}^{0+1}$ on the cause where $\Psi_i = \{j \in [1..M]\}$ latent variables assigned to the consider tata \emptyset . $\psi(i)$ is thereby a learnable assignment

maps each latent variable to ppe of the interior $\psi : \llbracket 1..M \rrbracket \rightarrow \llbracket 0..K \rrbracket, \text{ with } \psi(i) = 1$ latent variable z_j does not belong to any find the field of the second seco variable. Then, the objective of the mode the likelihood $p_{\phi}(g_{\theta}(x^{t+1}))$ 29 distribution in \mathcal{D} . $095\hat{r}^{t+p}a(C_i)$ cha

Before discussing the identifiability results tional case, we first state that: Observati

ere a ball can

Learning Causal Variables from Temporal Observations - Phillip Lippe

CITRIS Experiments Pong

- CITRIS identifies the causal variables accurately
- Identified cause-effect relations closely follow ground truth

CITRIS Experiments Visualizing the latent space

Novel combinations of causal factors

Causal Representation Learning for Instantaneous Effects

Learning for Instantaneous and Temporal Effects." ICLR, 2023.

- **Causal Representation Learning** aims to learn generalizable, robust representations of causal variables in an environment
- **CITRIS** identifies causal variables in variety of environments by information about interventions
- Allows for interpretable, controllable latent spaces
- Opportunity for learning representations in complex, interactive environments like Embodied AI

Figure credit: [1] Szot, Andrew, et al. "Habitat 2.0: Training home assistants to rearrange their habitat." NeurIPS 2021.

Learning Causal Variables from Temporal Observations - Phillip Lippe

References

ſ	D

<u>Phillip Lippe</u>, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. "**CITRIS: Causal Identifiability from Temporal Intervened Sequences**." In International Conference on Machine Learning (ICML). PMLR, 2022.

<u>Phillip Lippe</u>, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. "**Causal Representation Learning for Instantaneous and Temporal Effects.**" In International Conference on Learning Representations (ICLR), 2023.

Johann Brehmer, Pim de Haan, <u>Phillip Lippe</u>, Taco Cohen. **"Weakly supervised causal representation learning**." In Advanced in Neural Information Processing Systems (NeurIPS), 2022. **Slides and Papers**

