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Abstract

Learning causal representations is a crucial step toward understanding and reason-
ing about an agent’s actions in embodied AI and reinforcement learning. In many
scenarios, an intelligent agent starts learning to interact with an environment by
initially performing coarse actions with multiple simultaneous effects. During the
learning process, the agent starts acquiring more fine-grained skills that can now
affect only some of the factors in the environment. This setting is currently underex-
plored in current causal representation learning methods that typically learn a single
causal representation and do not reuse or refine previously learned representations.
In this paper, we introduce the problem of hierarchical causal representation learn-
ing, which leverages causal representations learned with coarse interactions and
progressively refines them, as more fine-grained interactions become available.
We propose HERCULES, a method that builds a hierarchical structure where at
each level it gradually identifies more fine-grained causal variables by leveraging
increasingly refined interventions. In experiments on two benchmarks of sequences
of images with intervened causal factors, we demonstrate that HERCULES suc-
cessfully recovers the causal factors of the underlying system and outperforms
current state-of-the-art methods in scenarios with limited fine-grained data. At the
same time, the acquired representations of HERCULES exhibit great adaptation
capabilities under local transformations of the causal factors.

1 Introduction

Causal representation learning (CRL) [48] aims at identifying the causal variables of an underlying
system along their relations given high-dimensional observations, e.g., images. Learning causal
representations is a crucial step toward understanding and reasoning about an agent’s actions in
embodied AI and reinforcement learning. Many previous studies focused on obtaining causal
representations by using intervention targets [30, 32, 33], counterfactual observations [5, 35, 56],
environment interactions [29, 31] or nonstationarity [58, 59]. These methods learn a single causal
representation, instead of refining previously learned representations when there are changes in the
data or environment that allow for a more fine-grained identifiability.

In many practical scenarios, we might have an intelligent agent, which starts learning to interact
with an environment by initially performing coarse actions that have multiple simultaneous effects,
e.g. perturbing many causal variables in the environment. During the learning process, the agent
starts acquiring more fine-grained skills that can now perturb only some of the causal variables.
While the fine-grained actions might help completely identify the causal factors, we still want to
be able to efficiently reuse the coarse causal representations that we learned in the first phase. As
we experimentally demonstrate, these coarse causal representations reduce the required amount of
fine-grained interactions needed to fully identify the causal factors. Moreover, maintaining different
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levels of coarseness of causal representations allows us to generalize across environments with the
same underlying system, but different fine-grained representations.

In this paper, we introduce the hierarchical causal representation learning (HCRL) setting, which
considers hierarchies of progressively more fine-grained causal representations. We propose an
HCRL method, HERCULES, that learns causal representations in a hierarchical manner, extending
CITRIS [33]. In the initial phase, HERCULES captures high-level causal variables, inferred from the
coarse interventions. Based on this initial disentanglement, HERCULES redefines the representations
and further disentangles each group of causal variables into low-level causal variables, using more
fine-grained interventions. Overall, this iterative process leads to a hierarchical structure adapting to
the available skills (interventions) at each time. Through this hierarchical framework, increasingly
fine-grained interactions are leveraged, ultimately identifying each individual causal variable.

Overall, our contributions are summarized as follows:

• We introduce the hierarchical causal representation learning (HCRL) setting, which aims at
learning intermediate representations that block-identify [56] groups of causal factors and
are further refined across hierarchical levels.

• We propose the first method for HCRL, HERCULES, which leverages interactions at differ-
ent levels of granularity to build a versatile hierarchical causal framework. Its hierarchical
structure can be expanded to accommodate different numbers of hierarchical levels.

• We modify two current benchmark datasets for the HCRL setting and demonstrate that
HERCULES outperforms current state-of-the-art methods in scenarios with limited fine-
grained interactions. At the same time, we show that in some initial experiments, the
acquired representations can efficiently adapt to environments where the effects of causal
variables differ in the observational space.

2 Related Work

Learning hierarchical representations and CRL are two fields that were previously explored indepen-
dently. In this section, we provide a comprehensive overview of their literature.

Hierarchical Representations. The concept of hierarchical representations has been broadly
studied, with many approaches ranging from attention-based models such as Swin Transformer [34]
to probabilistic generative models like hierarchical variational models (HVMs) [43]. In these models,
the early layers commonly capture local, low-level features while deeper layers focus on high-level
concepts. Other works learn a hierarchical structure by reformulating the variational autoencoder’s
(VAE) [24] objective as the Lagrangian of a constrained optimization problem [27, 46], utilizing the
nested Chinese Restaurant Process [13] or employing a ladder-based approach for VAEs [50] with
NVAE [52] narrowing the sizeable gap between VAEs and other generative models.

In another line of work, a growing body of research has explored the use of alternative geometries,
modeling embeddings in the hyperbolic space. Despite the success of Euclidean embeddings [8, 54],
they still fall short when data exhibit latent hierarchical structures, since they require a prohibitive
amount of dimensions to capture complex relations [40]. On the other hand, hyperbolic spaces can
capture hierarchical relations with few dimensions due to their exponentially increasing volume [47].
Thereby, a surge of works exploited the capabilities of hyperbolic embeddings in tasks entailing
symbolic data [10, 11, 41, 55], as well as in a wide variety of computer vision problems [1, 3, 22, 37,
53], showing their benefits for problems with underlying hierarchical structures.

Causal Representation Learning. One of the precursors of causal representation learning (CRL) is
Independent Component Analysis (ICA) [6, 17], which is a method that seeks to recover independent
variables that were measured together through a linear invertible transformation. The impossibility of
identifying the sources in the general non-linear case [19] prompted research in using additional aux-
iliary variables [15, 16, 18]. Non-linear ICA has been further extended to deep learning architectures
[20, 25]. Several studies drew connections between ICA and causality, demonstrating how practices
can be transferred from one field to another [14, 38, 44, 49].

Recently, there have been significant advances in CRL, which lies in the intersection of causality and
representation learning. CITRIS [32, 33], which our method builds upon, uses observed intervention
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targets to identify scalar as well as multidimensional causal factors from temporal high-dimensional
data. BISCUIT [31] replaces the intervention targets, which require substantial supervision, with
unobserved binary interaction variables. Also, using counterfactual observations where an unknown
subset of variables has been intervened is a common practice for learning causal representations
[2, 5, 35, 56]. Other works on temporal data provide identifiability results by employing mechanism
sparsity regularization and modeling interventions as external actions [28, 29], or enforcing the
independent noise condition and modeling soft-interventions as non-stationary noise [58, 59].

3 Preliminaries

We adopt the TempoRal Intervened Sequences (TRIS) setup that is used in CITRIS [33]. We assume
that the underlying causal process that generates the data is modeled by a Dynamic Bayesian Network
(DBN) [7, 39] with K causal factors instantiated at each time step t as Ct = (Ct

1, C
t
2, ..., C

t
K).

Each causal factor Ci ∈ DMi
i can be potentially multidimensional with Di denoting the domain,

DMi
i ⊆ RMi for continuous variables, DMi

i ⊆ ZMi for discrete variables, and Mi indicating its
dimensionality. Thereby, the causal factors’ space is defined as C = DM1

1 ×DM2
2 × ...DMK

K . We
assume there are no instantaneous effects, i.e., causal relations between variables of the same time-
step, and that the DBN is first-order Markov and stationary, so the only causal relations can happen
between two adjacent time steps and repeat across all pairs of timesteps.

We furthermore consider that there can be soft interventions on each causal factor Ci in the system
at each timestep t, which can perturb its relation to its parents. We also assume the knowledge
of the intervention target vector at each step It ∈ {0, 1}K , where Iti = 1 indicates that Ct

i was
intervened, while Iti = 0 that was not. We model potential dependencies between the interventions
through a latent variable Rt. At each time step, we observe a high-dimensional observation Xt =
h(Ct

1, C
t
2, ..., C

t
K , E

t), where Et being an exogenous variable modeling any noise. The observation
function h : C × E → X that maps the causal factor space C and the noise space E to the observation
space X is required to be bijective, allowing us to uniquely identify each causal factor from an
observation. In this setting, CITRIS [33] is able to identify the minimal causal variables, which are
the parts of each (potentially multidimensional) causal variable Ci that are manipulable, i.e., affected
by the corresponding intervention variable Ii given the values of the causal variables in the previous
timestep, under the assumption that each intervention target Ii is not a deterministic function of any
other intervention target Ij , i ̸= j.

We will assume for simplicity that all of the causal variables that we will consider at different
levels are completely affected by their corresponding intervention variable, so in this case, minimal
causal variables and causal variables will be the same. Additionally, we will leverage the potentially
multidimensional causal variables to model different granularities of causal representations, allowing
us to refine them as more fine-grained interventions are available in the environment.

4 Hierarchical Causal Representation Learning

For learning hierarchical causal representations, we propose HERCULES (HiERarchical CaUsaL
reprESentations), a framework that gradually identifies more fine-grained causal variables by leverag-
ing increasingly refined interactions. In this paper, we base HERCULES on the recent CRL method
CITRIS [33], but the approach is general and it can be applied to other CRL methods as well.

Autoencoder. Initially, we consider a pre-trained AE that models the invertible function gθ : X →
Z with Z ⊆ RM denoting the latent space and M its dimensionality. Specifically, the encoder gθ
transforms an image x into a vector z of fewer dimensions:

gθ(x) = z (1)
and then tries to reconstruct the original image x using the low-dimensional vector z and a decoder
that models the inverse of the encoder. Once the AE model is trained, its parameters remain frozen,
and we employ a series of normalizing flows (NFs) [45] to hierarchically identify the causal factors,
leading to a hierarchical causal structure of L levels.

Joint Interventions. We consider at each time point t that a causal variable Ct
i may have been

intervened. To enable hierarchical causal representation learning, we assume that certain causal
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Figure 1: Overview of HERCULES. In the first step, we encode a high observational sample, e.g.
an image, to obtain an entangled representation z (green). We then learn an NF to identify causal
variables that are jointly intervened. In this example, two groups were considered (blue and yellow).
Finally, for each block of variables, a distinct normalizing flow further disentangles the group,
identifying the causal variables at an atomic level (shades of blue and yellow).

variables are consistently jointly intervened at the hierarchical level l, leading to the formation of
Kl ≤ K groups representing the jointly intervened variables. The intervention targets at time step
t and level l are denoted as Itl ∈ {0, 1}Kl , where Itl,i = 1 indicates that the group i ∈ J1..KlK has
been intervened at step t, while Itl,i = 0 that it has not been intervened upon. To allow HERCULES
to ultimately attain a fully disentangled representation, progressing within the hierarchical levels,
we leverage more fine-grained interventions. Note that when a group pertains to a single causal
variable, HERCULES is able to individually identify it, as in CITRIS. In the case of consistently joint
interventions, HERCULES identifies an entangled version of the respective causal variables.

Dataset. For each level l within the hierarchical structure, we consider a distinct training dataset
Dl comprising tuples {xt, xt+1, It+1

l } with xt and xt+1 denoting the high-dimensional observations
at time step t and t+ 1 obtained by the observation function. It+1

l denotes the intervention targets on
the groups of causal variables at level l. Each subsequent dataset Dl+1 contains more fine-grained
intervention targets, enforcing some disentanglement in the next stage. The final dataset DL−1

contains independent interventions of the remaining individually unidentified causal factors, enabling
their identification in the last hierarchical level.

HERCULES. HERCULES models a hierarchical causal structure through a series of L levels, with
each latent space denoted as {Zl}L−1

l=0 . At each level l, a distinct invertible function fl : Zl−1 → Zl

maps the representation zl−1 ∈ Zl−1 of level l − 1 with the next level’s representation zl ∈ Zl, i.e.,

fl(zl−1) = zl (2)

Each fl comprises of Kl−1 models, denoted as fl,i, disentangling each group i within level l − 1:

fl(zl−1) =

{
fl,i(zl−1,i) if group i has more than one causal variable
zl−1,i if group i has exactly one causal variable

(3)

with zl,i = {(zl)j | j ∈ J1..MK, ψl(j) = i} referring to the set of latent variables at level l that an
assignment function ψl : J1..MK → J0..KlK assigned to group i. In addition, we use ψl(j) = 0
to denote any latent dimension that does not belong to a causal variable or group. In cases where
zl−1,i pertains to a single causal variable, fl,i is considered to be the identity function, as the causal
variable has already been disentangled from the rest. As the initial level, we consider the entangled
representation provided by the AE, Z0 = Z . The invertible functions fl require the same input and
output dimensionality, thereby each space in the hierarchical structure follows the same dimensions,
∀l ∈ J0..L − 1K : Zl ⊆ RM . Each subsequent level within the hierarchical structure further
disentangles the previous representation, gradually identifying more fine-grained causal variables.

Objective Function. For each hierarchical level l, HERCULES learns:

1. an invertible function fl : Zl−1 → Zl, mapping a hierarchy’s latent space to the next,
identifying Kl blocks of causal variables;

2. an assignment function ψl : J1..MK → J0..KlK, mapping the dimensions of the latent space
Zl to one of the causal factors or groups present in the hierarchical level.
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The hierarchical levels have to be attained in a sequential order, with the preceding levels remaining
frozen throughout the remainder of the training process. This is crucial as the employed models
require fixed input sizes, while at the same time it enhances the overall training stability.

The disentanglement is enforced by the transition prior, which conditions each latent variable
precisely on one of the intervention targets. Let the invertible composite function gθl : X → Zl map
a high-dimensional image to a hierarchical level:

gθl = fl ◦ fl−1 ◦ ... ◦ f1 ◦ gθ (4)

For each hierarchical level l, we model the prior pϕl
(zt+1

l | ztl , I
t+1
l ) with ztl , z

t+1
l ∈ Zl, z

t
l = gθl(x

t)

and zt+1
l = gθl(x

t+1). To impose the disentanglement of the latent space, the prior is factorized as:

pϕl

(
zt+1
l | ztl , It+1

l

)
=

Kl∏
i=0

pϕl

(
zt+1
l,i | ztl , It+1

l,i

)
(5)

with It+1
l,i referring to whether the group i at level l was intervened or not, and It+1

l,0 = 0 since an
extra variable was used to capture any noise. Finally, the objective for each hierarchical level is to
maximize the likelihood:

pϕl,θl(x
t+1|xt, It+1

l ) =

∣∣∣∣∂gθl(xt+1)

∂xt+1

∣∣∣∣ pϕl
(zt+1

l | ztl , It+1
l ) (6)

In the case of a single hierarchical level and infinite fine-grained interventional data, HERCULES
reverts to CITRIS and thus shares the same identifiability results. We conjecture that HERCULES
provides the same identifiability results as CITRIS also for multiple hierarchies.

5 Experiments

To carry out the experimental analysis and evaluate the effectiveness of HERCULES, we use the
Temporal Causal3DIdent [56, 60] and the Voronoi [33] dataset. The former provides a challenging
benchmark due to the presence of various causal relations and the high-dimensionality of the obser-
vational space. The latter offers great flexibility in modeling different relation types, facilitating a
thorough and rigorous assessment of the method. To quantify HERCULES’ performance, we use two
correlation metrics, the R2 coefficient of determination [57] and the Spearman’s rank coefficient [51],
measuring the correlation between the learned latent variables assigned to a causal factor and the
corresponding ground truth value of it. Also, we quantify the reconstruction fidelity by combining
causal factors of different images, using triplet evaluation [33]. As our baselines, we use the VAE
models iVAE [21], SlowVAE [26], DMSVAE [29], and LEAP [59], as well as the NF variant of
CITRIS [33]. The same intervention targets are provided as the auxiliary variable for all methods.
For HERCULES, we mainly focus on two hierarchical levels. In the first, we block identify the
groups [pos_x, pos_y, pos_z], [rot_α, rot_β], [rot_s, hue_s, hue_b, hue_o] and [obj_s] for
the Temporal Causal3DIdent dataset as well as [c_0, c_1, c_2] and [c_3, c_4, c_5] for the Voronoi
dataset. In the second level, we individually identify each causal factor for both datasets.

Temporal Causal 3DIdent. For the Temporal Causal 3DIdent, we consider two variations, one
with only the teapot shape and one entailing all shapes. In Table 1a, we provide the experimental
results with both variants. First, we observe the NF-based models, i.e., CITRIS and HERCULES,
significantly outperform the VAEs. This highlights the difference in the reconstruction fidelity
between the AE that had negligible reconstruction error and the VAEs that were constrained by the
strong priors embedded in the KL divergence term. Moreover, HERCULES provides slightly better
correlation metrics, especially on the off-diagonals.

Data Efficiency. To investigate the data efficiency of the best-performing methods, we limit the
fine-grained interventional data to 50% and 10% and trained CITRIS and the last hierarchical level of
HERCULES solely on them. As noted in Table 1a, HERCULES significantly outperforms CITRIS,
indicating that the previous hierarchical levels efficiently guided the disentanglement process. As
another baseline, we train CITRIS on the coarse interventions and then finetune it on the same
fine-grained ones, denoted as CITRIS-FT. Although we notice increased performance compared to
CITRIS, CITRIS-FT is still unable to surpass HERCULES, strengthening our previous results that a
hierarchical causal structure compensates in the case of limited fine-grained interactions.
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Table 1: Experimental results with (a) the Temporal Causal3DIdent and (b) the Voronoi dataset. The
results are averaged over 5 different seeds (3 for the 7 shapes variant). The triplet evaluation distance
is in the range of [0, 1] and refers to the average distance of all causal variables (optimal value 0).
The diag and sep in correlation metrics denote the average of the diagonals (optimal value 1) and
off-diagonals (optimal value 0) respectively in the correlation matrices.

(a) Temporal Causal 3DIdent

Dist. ↓ R2 diag ↑ R2 sep ↓ Sp. diag ↑ Sp. sep ↓
Baselines

Temporal Causal3DIdent 7 Shapes
SlowVAE 0.44 0.22 0.10 0.30 0.22
iVAE 0.12 0.82 0.08 0.83 0.12
DMSVAE 0.14 0.78 0.09 0.79 0.18
LEAP 0.14 0.78 0.12 0.80 0.21

CITRIS 0.10 0.95 0.07 0.95 0.13
HERCULES 0.11 0.94 0.04 0.96 0.10

Temporal Causal3DIdent Teapot
SlowVAE 0.42 0.26 0.14 0.33 0.23
iVAE 0.22 0.70 0.06 0.74 0.11
DMSVAE 0.20 0.70 0.08 0.74 0.16
LEAP 0.21 0.70 0.09 0.74 0.19

CITRIS 0.08 0.93 0.08 0.94 0.13
HERCULES 0.08 0.94 0.04 0.96 0.11

Data Efficiency
Temporal-Causal3DIdent Teapot (50%)

CITRIS 0.10 0.91 0.10 0.91 0.15
HERCULES 0.09 0.93 0.04 0.95 0.11

Temporal-Causal3DIdent Teapot (10%)
CITRIS 0.41 0.36 0.24 0.44 0.38
CITRIS-FT 0.22 0.76 0.15 0.78 0.24
HERCULES 0.15 0.86 0.10 0.87 0.14

Environment Generalization
Temporal-Causal3DIdent Teapot (rotating xy-plane by 20 degrees)

HERCULES 0.06 0.97 0.04 0.98 0.10
Temporal-Causal3DIdent Teapot (applying shear on the xy-plane)

HERCULES 0.08 0.94 0.04 0.95 0.11

(b) Voronoi benchmark

Dist. ↓ R2 diag ↑ R2 sep ↓ Sp. diag ↑ Sp. sep ↓
Baselines

Voronoi - 6 variables (Graph 1)
CITRIS 0.10 0.91 0.10 0.96 0.26
HERCULES 0.11 0.86 0.09 0.93 0.25

Voronoi - 6 variables (Graph 2)
CITRIS 0.15 0.83 0.17 0.91 0.36
HERCULES 0.09 0.92 0.04 0.96 0.19

Voronoi - 6 variables (Graph 3)
CITRIS 0.12 0.86 0.14 0.91 0.32
HERCULES 0.09 0.87 0.09 0.92 0.24

False Positive Interventions
Voronoi - 6 variables (Graph 1, 20% noisy targets)

CITRIS 0.13 0.85 0.14 0.92 0.33
HERCULES 0.11 0.86 0.09 0.93 0.24

Voronoi - 6 variables (Graph 1, 50% noisy targets)
CITRIS 0.15 0.78 0.12 0.88 0.31
HERCULES 0.11 0.86 0.08 0.93 0.24

Voronoi - 6 variables (Graph 1, 99% noisy targets)
CITRIS 0.17 0.67 0.14 0.80 0.33
HERCULES 0.11 0.86 0.08 0.93 0.23

Ablation Study: 3 Hierarchical Levels
Voronoi - 6 variables

HERCULES (Graph 1) 0.08 0.89 0.08 0.94 0.24
HERCULES (Graph 2) 0.06 0.93 0.04 0.96 0.16
HERCULES (Graph 3) 0.06 0.90 0.08 0.95 0.23

Ablation Study: Grouping
Voronoi - 6 variables (Graph 1)

HERCULES 3-3 0.11 0.86 0.09 0.93 0.25
HERCULES Interleaving 0.09 0.90 0.07 0.95 0.21
HERCULES 5-1 0.07 0.92 0.06 0.96 0.20

Environment Generalization. We evaluate the adaptability of the first level’s representations, which
capture the abstract variables of position, rotation and color, for identifying similar, albeit not identical,
causal factors in the next level. We employ the first level which is trained on the regular xy-plane and
subsequently train the second level on a transformed plane. The applied transformation influences
how the causal factors pos_x and pos_y affect the object’s position in the observational space X .
The results in Table 1a show that under a rotation of 20 degrees and a shear transformation with
λ = 0.1, HERCULES is still able to attain the same performance as in the regular plane, indicating
its adaptation capabilities.

Voronoi. In Table 1b, we report the experimental results with 3 different Voronoi datasets, generated
using distinct graphs with 6 variables. HERCULES consistently exhibits lower off-diagonal values
compared to its non-hierarchical counterpart, CITRIS. Moreover, it shows robustness when a per-
centage of the intervention targets have one false positive intervention element, i.e., converting an
entry from 0 to 1. HERCULES accommodates two or potentially more hierarchical levels without
compromising its performance. Finally, we evaluate HERCULES when different joint interventions
are used for training the initial hierarchical level and obtain similar levels of performance.

6 Conclusion

In this paper, we introduced HERCULES, a hierarchical CRL approach that leverages coarse in-
terventions to build a hierarchical causal structure. HERCULES is able to leverage coarse-grained
representations and perform well even when fine-grained interactions are scarce, outperforming
SOTA methods. In the early levels of the hierarchy, it identifies groups of causal variables and then
refines their representations to further disentangle them. HERCULES exhibits considerable flexibility
in its structure, accommodating varying numbers of levels and capturing diverse causal variables.

Hierarchical causal structures hold promise in the field of reinforcement learning, where agents learn
to interact with a system. In this context, a coarse disentanglement could facilitate in identifying
actions for individual variables, essentially guiding the skill-learning process. Moreover, HERCULES’
framework can be extended to various CRL methods, such as BISCUIT [31], while the results on
the representations’ adaptability pave the way for the employment of pre-trained causal models.
Finally, since hyperbolic spaces befit capturing hierarchical structures [37], incorporating hyperbolic
geometry could potentially enhance the overall outcomes of our method.
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Appendix

A Datasets

In this section, we describe the datasets used for the experimental evaluation. For the Temporal-
Causal3DIdent with the teapot and the Voronoi datasets, we rendered 100,000 images for training,
while the test dataset comprised 8,000 images which were also used to produce 8,000 triplet test
samples. For the variant with all 7 shapes, we increased the training size to 250,000 images.

A.1 Temporal-Causal3DIdent

The Temporal Causal3DIdent dataset poses significant challenges because of the high-dimensional
observations and the variety of relations between the causal factors. The dataset consists of 3D objects
projected in 2D under varying conditions. The underlying system generating the images consists
of ten causal factors: three for the object’s spatial position [pos_x, pos_y, pos_z] ∈ [−2, 2]3,
two for the object’s rotation [rot_α, rot_β] ∈ [0, 2π)2, the hue of the object, background and
spotlight [hue_o, hue_b, hue_s] ∈ [0, 2π)3, the spotlight’s rotation rot_s ∈ [0, 2π) and finally,
the object’s shape, denoted as obj_s with seven possible categorical values. All continuous variables
follow a Gaussian distribution with the mean value provided by a non-linear combination of their
parents. An instance of each available shape combined with different values of the other variables
is illustrated in Figure 2. The dataset contains a diverse range of causal relations between these
variables including chains of causal relations and variables with up to four causal parents. Figure 3
provides an extensive visual depiction of the relations.

The dataset generation process starts by initially assigning a random value to each of the causal
factors and then rendering an image. Following the causal relations depicted in Figure 3, for each
subsequent time step, we sample new values and create a new image. Additionally, during each step,
we consider that an intervention may be performed to a causal factor, replacing its value using a
uniform distribution. Particularly, for the rotation and hue variables, the distribution U(0, 2π) is used
to sample the intervention values, while for the position variables we use the distribution U(−2, 2).
For the shape, one of the categorical values is uniformly sampled. At each level of the hierarchy, the
decision to perform an intervention is determined by sampling from a discrete uniform distribution,
which selects one of the groups within the level or no group at all. All the causal variables in the
selected group are then intervened. For the rest of the baselines, the intervention targets for each
causal factor are sampled from a Bernoulli distribution, Bernoulli(0, 1). The generated images have
a resolution of 64 × 64, however, for visualization purposes, the images reported have a higher
resolution of 256× 256. Sequential samples from the dataset are presented in Figure 4.

A.2 Voronoi

Voronoi is a synthetic dataset generated by a flexible system that can support any causal graph with
an arbitrary number of variables. For each generated graph, an edge is created for every pair of
variables in Ct and Ct+1 with a probability of 0.25. Then, a randomly initialized neural network
is employed to model these relations. Specifically, the model takes as input a subset of the causal
factors Ct, which are the parents of Ci according to the causal graph, to parameterize a Gaussian
distribution for Ci. Similarly to the Temporal Causal3DIdent, at each time step, we may perform
an intervention, replacing the value of the intervened causal variable using a Gaussian distribution.
The intervention targets follow a uniform distribution, sampling one of the grouped causal variables
or none at all. The causal variables of the sampled group are then intervened. For the baselines, we
perform an intervention upon each causal variable with a probability of 0.15.

After computing the causal variables for each time step, we proceed to render them into a high
observational space. The mapping process, initially, involves the employment of a two-layer NF
to entangle the causal factors. Then, an image is generated with a resolution of 32× 32 where the
causal variables are depicted as colors in a fixed Voronoi diagram. Figure 5 illustrates samples from
the dataset, showcasing the diagrams for 6 causal variables. The 3 temporal causal graphs used to
generate the data are depicted in Figure 6. For visualization purposes, the displayed images are at a
higher resolution of 320× 320.
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(a) Teapot (b) Armadillo (c) Bunny (d) Cow (e) Head (f) Dragon (g) Horse

Figure 2: An example image for all 7 object shapes used in the Temporal-Causal3DIdent dataset.

pos_x pos_y pos_z rot_α rot_βrot_s hue_s hue_b hue_o obj_s

pos_x pos_y pos_z rot_α rot_βrot_s hue_s hue_b hue_o obj_s

Figure 3: The relations between the causal variables in the Temporal Causal3DIdent dataset. The
arrows indicate the temporal relations between the causal variable Ct

i and Ct+1
j . [33]

Figure 4: Sequential samples from the Temporal Causal3DIdent dataset, where at each time-step
each causal variable may have been intervened.

Figure 5: Sequential samples from the Voronoi dataset with 6 causal variables.
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(a) Temporal Graph 1
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c1c2

c3

c4 c5

(b) Temporal Graph 2

c0

c1c2

c3

c4 c5

(c) Temporal Graph 3

Figure 6: The summary graphs modeling the temporal causal relations in the Voronoi datasets. An
arrow denotes a relation between Ct

i and Ct+1
j .
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Figure 7: Triplet examples used for triplet evaluation. In each triplet, a combination of causal
variables of the first two images is used to generate the third image. For example, in the top left
triplet, we use the shape (cow) from the first image and the object’s color (blue) from the second one.

B Metrics

In this section, we describe the evaluation metrics used for HERCULES and the baselines.

Correlation Metrics To evaluate the proposed method we measure the correlation between the
learned latent variables and the ground truth causal variables. Since the latent variables describing
causal variables can be multidimensional, we learn a mapping between the two by employing a
Multilayer Perceptron (MLP). For each set of latent variables that are assigned to the same causal
variable, a distinct MLP is trained. The evaluation phase starts after the completion of HERCULES’
training process, with its parameters remaining frozen. In this way, no error is backpropagated and
gradients are not calculated to further update the model’s weights. The MLPs are trained using the
mean squared error (MSE) loss for continuous variables, apart from circular values. Predicting the
value 2π − ϵ with the ground truth being 0, MSE would falsely yield a high error. Therefore, to
address this issue, for such variables, we predict a vector instead and calculate the cosine distance
from the ground truth angle projected onto the unit circle. Finally, for categorical causal variables,
the cross entropy loss is used. Once the MLPs are trained, their predictions are utilized to measure
their correlation with the corresponding causal variables. We use two correlation metrics, the R2

coefficient of determination [57] and the Spearman’s rank coefficient [51].

Triplet Evaluation The evaluation of HERCULES also incorporates the use of triplet evaluation,
which quantifies the fidelity of the reconstruction based on a random combination of causal variables
from two different images. Specifically, given two randomly sampled images from the test set, a
third image is generated by combining different causal variables originating from the two original
images. Initially, the two images are independently encoded, and then the latent variable i is extracted
from the first image, if it has been assigned to a causal variable linked to that image. Otherwise,
the variable i is obtained from the second image. This process is repeated for all latent variables,
resulting in the formation of a new latent space. Then, the inverse of the NFs is applied, followed
by the decoder to generate a new image. This concept is visually depicted in Figure 7 using the
Temporal Causal3DIdent dataset where the ground truth image is the newly generated one. In the
top-left triplet, it can be observed that the shape component, specifically the depiction of a cow, was
extracted from the first image, while the object’s color, which is blue, was derived from the second
one. Consequently, the outcome of merging these two components yields a blue cow.

Naively relying on the measurement of the reconstruction error fails to offer a comprehensive analysis
of the method’s performance, as potential inaccuracies in certain causal variables may yield high
errors, while inaccuracies in others may relatively be overlooked. For example, in the Temporal-
Causal3DIdent dataset, the background color would have a substantial impact on the reconstruction
loss, while the rotation of specific shapes may have negligible influence. Instead, a more descriptive
metric is employed, involving the use of an additional CNN that predicts the values of the causal
variables based on the input images. The distance between the predictions and the ground truth values
can be subsequently quantified for each individual causal variable, enabling a more precise analysis.
The employed CNN model had overall minimal prediction errors with both datasets.
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Table 2: The architecture of the encoder and the decoder. The same architecture was used for all the
VAE models. The residual blocks in the decoder consist of 2 convolutions with 64 channels, kernel
of size 3 and stride 1. The upsampling denotes bilinear upsampling with a scaling factor of 2.

Layer Feature Dimension Kernel Stride Activation Function
(H × W × C)

fenc

Conv 32 × 32 × 64 3 2 BatchNorm+SiLU
Conv 32 × 32 × 64 3 1 BatchNorm+SiLU
Conv 16 × 16 × 64 3 2 BatchNorm+SiLU
Conv 16 × 16 × 64 3 1 BatchNorm+SiLU
Conv 8 × 8 × 64 3 2 BatchNorm+SiLU
Conv 8 × 8 × 64 3 1 BatchNorm+SiLU
Conv 4 × 4 × 64 3 2 BatchNorm+SiLU
Conv 4 × 4 × 64 3 1 BatchNorm+SiLU
Reshape 1 × 1 × 1024 - - -
Linear 1 × 1 × 256 - - LayerNorm+SiLU
Linear 1 × 1 × 2·num_latents - - -

fdec

Linear 1 × 1 × 256 - - LayerNorm+SiLU
Linear 1 × 1 × 1024 - - -
Reshape 4 × 4 × 64 - - -
Upsample 8 × 8 × 64 - - -
ResidualBlock 8 × 8 × 64 3 1 -
Upsample 16 × 16 × 64 - - -
ResidualBlock 16 × 16 × 64 3 1 -
Upsample 32 × 32 × 64 - - -
ResidualBlock 32 × 32 × 64 3 1 -
Upsample 64 × 64 × 64 - - -
ResidualBlock 64 × 64 × 64 3 1 -
Pre-Activation 64 × 64 × 64 - - BatchNorm+SiLU
Conv 64 × 64 × 64 1 1 BatchNorm+SiLU
Conv 64 × 64 × 3 1 1 Tanh

C Architectures

In Table 2, we report the architecture of the encoder and the decoder used for the experiments. The
VAE models shared the same design to ensure a fair comparison. For CITRIS and HERCULES, we
used the same models for the Voronoi dataset while we increased the residual blocks by a factor of 2
per resolution for the experiment conducted with the Temporal Causal3DIdent dataset. Increasing
the complexity of the VAE’s decoder did not have a substantial influence. The prior distribution
was modeled by an autoregressive model, following a MADE architecture [12] with 2 layers and
SiLU activation functions. For each latent variable, 16 neurons were assigned per layer. For the
normalizing flows, an affine autoregressive flow was employed. The autoregressive model followed
the same MADE architecture. Between each coupling layer, activation normalization and invertive
1× 1 convolutions were used. For the target classifier, we used an MLP consisting of a single layer
and 128 neurons with Layer Normalization [4] and SiLU activation functions. All models were
developed using the deep learning framework PyTorch [42] and PyTorch Lightning [9].
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Table 3: An overview of the hyperparameter used for the VAE models. This configuration resulted in
approximately 20 minutes, 1 hour and 5 hours of training on an NVIDIA A100-SXM4-40GB with
the Voronoi, the teapot and the 7 shapes variant of the Temporal Causal3DIdent dataset respectively.

Hyperparameter Value

Batch size 512
Optimizer Adam [23]
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
KL divergence factor β 1.0
Number of latents 32
Number of epochs 200 (Voronoi, teapot), 1000 (7 shapes)
Target classifier weight 2.0
Gumbel Softmax temperature 1.0

Table 4: An overview of the hyperparameter used for the AE model. This configuration resulted in
approximately 1 hour, 2.5 hours and 30 hours of training on an NVIDIA A100-SXM4-40GB with the
Voronoi, the teapot and the 7 shapes variant of the Temporal Causal3DIdent dataset respectively.

Hyperparameter Value

Batch size 512
Optimizer Adam [23]
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
Number of latents 32
Number of epochs 200 (Voronoi, teapot), 1000 (7 shapes)
Gaussian noise std 0.05

Table 5: An overview of the hyperparameter used for the CITRIS and HERCULES models. In the case
of HERCULES, the hyperparameters apply for each hierarchical level’s model. This configuration
with CITRIS resulted in approximately 20 minutes, 30 minutes and 3.5 hours of training on an
NVIDIA A100-SXM4-40GB with the Voronoi, the teapot and the 7 shapes variant of the Temporal
Causal3DIdent dataset respectively. HERCULES required approximately double the training time,
since we sequentially trained two hierarchical levels.

Hyperparameter Value

Batch size 512, 64 (setting with 10%)
Optimizer Adam [23]
Learning rate 1e-3
Learning rate scheduler Cosine Warmup (100 steps)
Number of latents 32
Number of epochs 200 (Voronoi, teapot), 1000 (7 shapes)
Number of coupling layers 4 (Voronoi, teapot), 6 (7 shapes)
Target classifier weight 2.0
Gumbel Softmax temperature 1.0

D Training Hyperparameters

For all the experiments, we used the Adam optimizer [23] with the learning rate being set to 0.001.
For the target classifier, we used the AdamW variant [36] with a learning rate of 0.004 and weight
decay 0.0001. Also, a cosine warmup of 100 steps was employed. The batch size was set to 512
for all the experiments, with the exception of the setting with only 10% of the fine-grained dataset
where the batch size was 64. For the Voronoi and the teapot dataset, all the models were trained for
200 epochs while for the Temporal Causal3DIdent dataset that considered all 7 shapes the epochs
were increased to 1000. The latent spaces were composed of 32 latent variables. A summary of the
hyperparameters is provided in Table 3, 4 and 5.
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Table 6: Overview of the experimental results on the Temporal Causal3DIdent dataset considering
only the teapot shape. The results are averaged over 5 different seeds.

Triplet evaluation distances ↓ Correlation metrics

pos_x pos_y pos_z rot_α rot_β rot_s hue_s hue_b hue_o Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Baselines

Temporal Causal3DIdent Teapot
SlowVAE 0.27 0.26 0.31 0.49 0.50 0.15 0.76 0.62 0.65 0.42 0.26 0.14 0.33 0.23

± 0.050 ± 0.040 ± 0.025 ± 0.004 ± 0.002 ± 0.029 ± 0.022 ± 0.019 ± 0.021 ± 0.024 ± 0.020 ± 0.016 ± 0.017 ± 0.026
iVAE 0.07 0.04 0.06 0.43 0.49 0.03 0.60 0.02 0.11 0.22 0.70 0.06 0.74 0.11

± 0.002 ± 0.001 ± 0.002 ± 0.015 ± 0.002 ± 0.001 ± 0.041 ± 0.010 ± 0.011 ± 0.009 ± 0.009 ± 0.007 ± 0.020 ± 0.023
DMSVAE 0.09 0.05 0.13 0.47 0.49 0.05 0.33 0.00 0.08 0.20 0.70 0.08 0.74 0.16

± 0.004 ± 0.007 ± 0.004 ± 0.012 ± 0.003 ± 0.003 ± 0.224 ± 0.000 ± 0.017 ± 0.032 ± 0.037 ± 0.022 ± 0.043 ± 0.024
LEAP 0.12 0.05 0.14 0.45 0.49 0.05 0.40 0.00 0.10 0.21 0.70 0.09 0.74 0.19

± 0.033 ± 0.006 ± 0.006 ± 0.027 ± 0.003 ± 0.002 ± 0.115 ± 0.001 ± 0.034 ± 0.024 ± 0.040 ± 0.021 ± 0.037 ± 0.029

CITRIS 0.04 0.03 0.04 0.20 0.28 0.03 0.06 0.01 0.03 0.08 0.93 0.08 0.94 0.13
± 0.001 ± 0.001 ± 0.001 ± 0.014 ± 0.027 ± 0.002 ± 0.011 ± 0.006 ± 0.008 ± 0.008 ± 0.005 ± 0.014 ± 0.006 ± 0.015

HERCULES 0.04 0.03 0.04 0.15 0.22 0.04 0.14 0.03 0.05 0.08 0.94 0.04 0.96 0.11
± 0.002 ± 0.001 ± 0.002 ± 0.004 ± 0.018 ± 0.003 ± 0.020 ± 0.014 ± 0.005 ± 0.008 ± 0.004 ± 0.004 ± 0.003 ± 0.008

Data Efficiency
Temporal-Causal3DIdent Teapot (50%)

CITRIS 0.05 0.04 0.05 0.22 0.30 0.05 0.11 0.02 0.06 0.10 0.91 0.10 0.91 0.15
± 0.001 ± 0.001 ± 0.002 ± 0.009 ± 0.016 ± 0.037 ± 0.023 ± 0.016 ± 0.014 ± 0.013 ± 0.005 ± 0.031 ± 0.006 ± 0.013

HERCULES 0.05 0.03 0.04 0.16 0.22 0.05 0.19 0.05 0.06 0.09 0.93 0.04 0.95 0.11
± 0.002 ± 0.002 ± 0.002 ± 0.005 ± 0.019 ± 0.004 ± 0.048 ± 0.023 ± 0.004 ± 0.013 ± 0.005 ± 0.005 ± 0.004 ± 0.006

Temporal-Causal3DIdent Teapot (10%)
CITRIS 0.38 0.31 0.32 0.36 0.45 0.23 0.65 0.44 0.55 0.41 0.36 0.24 0.44 0.38

± 0.055 ± 0.041 ± 0.052 ± 0.012 ± 0.009 ± 0.033 ± 0.024 ± 0.060 ± 0.044 ± 0.036 ± 0.049 ± 0.029 ± 0.050 ± 0.026
CITRIS-FT 0.12 0.10 0.12 0.25 0.35 0.08 0.46 0.32 0.18 0.22 0.76 0.15 0.78 0.24

± 0.023 ± 0.055 ± 0.055 ± 0.008 ± 0.026 ± 0.046 ± 0.052 ± 0.131 ± 0.079 ± 0.050 ± 0.067 ± 0.040 ± 0.066 ± 0.046
HERCULES 0.05 0.03 0.04 0.21 0.27 0.07 0.36 0.18 0.13 0.15 0.86 0.10 0.87 0.14

± 0.002 ± 0.002 ± 0.002 ± 0.011 ± 0.024 ± 0.013 ± 0.130 ± 0.065 ± 0.023 ± 0.031 ± 0.020 ± 0.022 ± 0.015 ± 0.012
Environment Generalization

Temporal-Causal3DIdent Teapot (rotating xy-plane by 20 degrees)
HERCULES 0.03 0.02 0.03 0.11 0.16 0.03 0.08 0.02 0.02 0.06 0.97 0.04 0.98 0.10

± 0.002 ± 0.001 ± 0.002 ± 0.006 ± 0.021 ± 0.002 ± 0.019 ± 0.010 ± 0.003 ± 0.008 ± 0.003 ± 0.005 ± 0.003 ± 0.003
Temporal-Causal3DIdent Teapot (applying shear on the xy-plane)

HERCULES 0.06 0.03 0.04 0.14 0.22 0.04 0.14 0.03 0.05 0.08 0.94 0.04 0.95 0.11
± 0.001 ± 0.001 ± 0.002 ± 0.005 ± 0.016 ± 0.004 ± 0.018 ± 0.013 ± 0.007 ± 0.007 ± 0.004 ± 0.005 ± 0.004 ± 0.005

E Experimental Details

In this section, we provide additional details about some of the experiments. Also, in Table 6, 7 and
8, we report a more comprehensive analysis of our results, including the standard deviations and the
individual distances for each causal variable.

False Positive Noise To evaluate the robustness of HERCULES to false positive noise, we converted
one of the intervention targets’ entries from 0 into 1. This modification was applied for a random
subset comprising 20%, 50%, and 99% of the last level’s intervention targets.

Grouping In the experiments with the Voronoi dataset, for the first hierarchical level, we mainly
considered the 3-3 grouping where [c_0, c_1, c_2] and [c_3, c_4, c_5] comprised the groups con-
taining the jointly intervened causal variables. To evaluate the performance of HERCULES when
other joint interventions are present, we instead trained the first hierarchical level of HERCULES
on the interleaving grouping, which is [c_0, c_2, c_4] and [c_1, c_3, c_5], and the 5-1 grouping
comprising [c_0, c_1, c_2, c_3, c_4] and [c_5]. In each case, in the first hierarchical level, the
causal factors within the same group were jointly intervened while in the second level, we had atomic
interventions.

3 Hierarchical Levels In our experiments, we focused on two hierarchical levels. However, in
many environments, agents do not transition directly from coarse actions to highly precise interactions
but instead perform actions of an intermediate granularity. Therefore, it is important for HERCULES
to be able to leverage interactions of all levels of granularity by incorporating the respective number of
hierarchical levels. We evaluated HERCULES with three hierarchical levels. The groups formed in the
first stage were [c_0, c_1, c_2, c_3, c_4] and [c_5] while, in the second level, c_4 was disentagled
from the rest, resulting in the groups [c_0, c_1, c_2, c_3] and [c_4]. Finally, in the last level, every
causal variable was individually identified.
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Table 7: Overview of the experimental results on the Temporal Causal3DIdent dataset considering all
7 shapes. The results are averaged over 3 different seeds.

Triplet evaluation distances ↓ Correlation metrics

pos_x pos_y pos_z rot_α rot_β rot_s hue_s hue_b hue_o obj_s Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Baselines

Temporal Causal3DIdent 7 Shapes
SlowVAE 0.28 0.18 0.31 0.47 0.46 0.18 0.80 0.61 0.64 0.62 0.44 0.22 0.10 0.30 0.22

± 0.022 ± 0.015 ± 0.039 ± 0.001 ± 0.003 ± 0.019 ± 0.012 ± 0.049 ± 0.013 ± 0.001 ± 0.019 ± 0.002 ± 0.004 ± 0.013 ± 0.015
iVAE 0.07 0.04 0.09 0.39 0.35 0.03 0.04 0.00 0.06 0.22 0.12 0.82 0.08 0.83 0.12

± 0.002 ± 0.002 ± 0.004 ± 0.021 ± 0.013 ± 0.001 ± 0.008 ± 0.000 ± 0.030 ± 0.046 ± 0.009 ± 0.017 ± 0.011 ± 0.007 ± 0.011
DMSVAE 0.11 0.06 0.21 0.40 0.41 0.04 0.02 0.00 0.03 0.25 0.14 0.78 0.09 0.79 0.18

± 0.004 ± 0.004 ± 0.011 ± 0.025 ± 0.007 ± 0.001 ± 0.006 ± 0.000 ± 0.002 ± 0.036 ± 0.007 ± 0.025 ± 0.008 ± 0.019 ± 0.011
LEAP 0.10 0.06 0.20 0.39 0.38 0.05 0.02 0.00 0.10 0.24 0.14 0.78 0.12 0.80 0.21

± 0.007 ± 0.005 ± 0.001 ± 0.007 ± 0.011 ± 0.002 ± 0.003 ± 0.000 ± 0.139 ± 0.041 ± 0.019 ± 0.022 ± 0.013 ± 0.018 ± 0.006

CITRIS 0.07 0.04 0.07 0.20 0.26 0.04 0.12 0.03 0.09 0.07 0.10 0.95 0.07 0.95 0.13
± 0.003 ± 0.001 ± 0.005 ± 0.039 ± 0.064 ± 0.003 ± 0.017 ± 0.020 ± 0.007 ± 0.030 ± 0.018 ± 0.014 ± 0.017 ± 0.018 ± 0.016

HERCULES 0.07 0.04 0.07 0.16 0.18 0.06 0.19 0.10 0.13 0.04 0.11 0.94 0.04 0.96 0.10
± 0.001 ± 0.002 ± 0.002 ± 0.029 ± 0.041 ± 0.005 ± 0.036 ± 0.033 ± 0.012 ± 0.001 ± 0.018 ± 0.009 ± 0.005 ± 0.013 ± 0.006

Table 8: Experimental results with three different Voronoi datasets. The results are averaged over 5
different seeds.

Triplet evaluation distances ↓ Correlation metrics

c_0 c_1 c_2 c_3 c_4 c_5 Mean R2 diag ↑ R2 sep ↓ Spearman diag ↑ Spearman sep ↓
Baselines

Voronoi - 6 variables (Graph 1)
CITRIS 0.11 0.07 0.13 0.11 0.11 0.09 0.10 0.91 0.10 0.96 0.26

± 0.056 ± 0.035 ± 0.044 ± 0.042 ± 0.019 ± 0.036 ± 0.039 ± 0.031 ± 0.032 ± 0.016 ± 0.056
HERCULES 0.09 0.09 0.16 0.10 0.09 0.10 0.11 0.86 0.09 0.93 0.25

± 0.038 ± 0.022 ± 0.051 ± 0.013 ± 0.020 ± 0.030 ± 0.029 ± 0.070 ± 0.042 ± 0.040 ± 0.058
Voronoi - 6 variables (Graph 2)

CITRIS 0.14 0.12 0.16 0.14 0.20 0.15 0.15 0.83 0.17 0.91 0.36
± 0.038 ± 0.023 ± 0.018 ± 0.018 ± 0.064 ± 0.022 ± 0.032 ± 0.057 ± 0.050 ± 0.039 ± 0.049

HERCULES 0.08 0.07 0.09 0.07 0.12 0.08 0.09 0.92 0.04 0.96 0.19
± 0.016 ± 0.015 ± 0.038 ± 0.023 ± 0.045 ± 0.014 ± 0.027 ± 0.031 ± 0.019 ± 0.017 ± 0.037

Voronoi - 6 variables (Graph 3)
CITRIS 0.11 0.17 0.09 0.10 0.13 0.13 0.12 0.86 0.14 0.91 0.32

± 0.044 ± 0.075 ± 0.028 ± 0.030 ± 0.082 ± 0.059 ± 0.052 ± 0.120 ± 0.076 ± 0.084 ± 0.100
HERCULES 0.08 0.15 0.08 0.07 0.09 0.12 0.09 0.87 0.09 0.92 0.24

± 0.029 ± 0.049 ± 0.016 ± 0.032 ± 0.046 ± 0.025 ± 0.034 ± 0.049 ± 0.039 ± 0.035 ± 0.045
False Positive Interventions

Voronoi - 6 variables (Graph 1, 20%)
CITRIS 0.14 0.08 0.17 0.12 0.15 0.11 0.13 0.85 0.14 0.92 0.33

± 0.056 ± 0.034 ± 0.064 ± 0.040 ± 0.031 ± 0.037 ± 0.045 ± 0.075 ± 0.059 ± 0.046 ± 0.077
HERCULES 0.09 0.09 0.17 0.10 0.09 0.10 0.11 0.86 0.09 0.93 0.24

± 0.038 ± 0.022 ± 0.051 ± 0.013 ± 0.020 ± 0.030 ± 0.029 ± 0.073 ± 0.044 ± 0.041 ± 0.060
Voronoi - 6 variables (Graph 1, 50%)

CITRIS 0.16 0.10 0.18 0.15 0.16 0.13 0.15 0.78 0.12 0.88 0.31
± 0.057 ± 0.037 ± 0.052 ± 0.045 ± 0.038 ± 0.048 ± 0.046 ± 0.106 ± 0.027 ± 0.061 ± 0.050

HERCULES 0.09 0.09 0.17 0.10 0.10 0.10 0.11 0.86 0.08 0.93 0.24
± 0.039 ± 0.023 ± 0.053 ± 0.013 ± 0.021 ± 0.032 ± 0.03 ± 0.073 ± 0.042 ± 0.041 ± 0.064

Voronoi - 6 variables (Graph 1, 99%)
CITRIS 0.16 0.13 0.20 0.18 0.19 0.16 0.17 0.67 0.14 0.80 0.33

± 0.057 ± 0.049 ± 0.074 ± 0.032 ± 0.032 ± 0.070 ± 0.049 ± 0.149 ± 0.028 ± 0.111 ± 0.029
HERCULES 0.09 0.09 0.17 0.11 0.10 0.10 0.11 0.86 0.08 0.93 0.23

± 0.040 ± 0.023 ± 0.053 ± 0.014 ± 0.021 ± 0.033 ± 0.03 ± 0.072 ± 0.038 ± 0.041 ± 0.063
Ablation Study: Grouping

Voronoi - 6 variables (Graph 1)
HERCULES 3-3 0.09 0.09 0.16 0.10 0.09 0.10 0.11 0.86 0.09 0.93 0.25

± 0.038 ± 0.022 ± 0.051 ± 0.013 ± 0.020 ± 0.030 ± 0.029 ± 0.070 ± 0.042 ± 0.040 ± 0.058
HERCULES Interleaving 0.08 0.06 0.13 0.09 0.09 0.08 0.09 0.90 0.07 0.95 0.21

± 0.044 ± 0.016 ± 0.060 ± 0.027 ± 0.027 ± 0.033 ± 0.035 ± 0.066 ± 0.036 ± 0.036 ± 0.063
HERCULES 5-1 0.07 0.05 0.11 0.07 0.06 0.10 0.07 0.92 0.06 0.96 0.20

± 0.019 ± 0.011 ± 0.032 ± 0.015 ± 0.012 ± 0.037 ± 0.018 ± 0.021 ± 0.035 ± 0.012 ± 0.050
Voronoi - 6 variables (Graph 2)

HERCULES 3-3 0.08 0.07 0.09 0.07 0.12 0.08 0.09 0.92 0.04 0.96 0.19
± 0.016 ± 0.015 ± 0.038 ± 0.023 ± 0.045 ± 0.014 ± 0.027 ± 0.031 ± 0.019 ± 0.017 ± 0.037

HERCULES Interleaving 0.10 0.10 0.10 0.09 0.13 0.10 0.11 0.90 0.06 0.95 0.21
± 0.044 ± 0.051 ± 0.024 ± 0.020 ± 0.045 ± 0.012 ± 0.037 ± 0.034 ± 0.026 ± 0.018 ± 0.049

HERCULES 5-1 0.06 0.04 0.07 0.06 0.06 0.13 0.06 0.93 0.06 0.97 0.20
± 0.007 ± 0.003 ± 0.014 ± 0.011 ± 0.008 ± 0.056 ± 0.009 ± 0.021 ± 0.045 ± 0.012 ± 0.061

Voronoi - 6 variables (Graph 3)
HERCULES 3-3 0.08 0.15 0.08 0.07 0.09 0.12 0.09 0.87 0.09 0.92 0.24

± 0.029 ± 0.049 ± 0.016 ± 0.032 ± 0.046 ± 0.025 ± 0.034 ± 0.049 ± 0.039 ± 0.035 ± 0.045
HERCULES Interleaving 0.14 0.14 0.09 0.09 0.14 0.11 0.12 0.82 0.10 0.89 0.26

± 0.073 ± 0.046 ± 0.020 ± 0.026 ± 0.054 ± 0.014 ± 0.044 ± 0.095 ± 0.043 ± 0.066 ± 0.033
HERCULES 5-1 0.05 0.09 0.06 0.04 0.05 0.12 0.06 0.91 0.10 0.95 0.25

± 0.023 ± 0.043 ± 0.006 ± 0.008 ± 0.009 ± 0.034 ± 0.018 ± 0.044 ± 0.028 ± 0.024 ± 0.039
Ablation Study: 3 Hierarchical Levels

Voronoi - 6 variables
HERCULES (Graph 1) 0.08 0.05 0.14 0.07 0.06 0.10 0.08 0.89 0.08 0.94 0.24

± 0.018 ± 0.013 ± 0.054 ± 0.017 ± 0.012 ± 0.039 ± 0.023 ± 0.041 ± 0.044 ± 0.036 ± 0.033
HERCULES (Graph 2) 0.07 0.05 0.07 0.06 0.07 0.13 0.06 0.93 0.04 0.96 0.16

± 0.008 ± 0.006 ± 0.020 ± 0.014 ± 0.009 ± 0.058 ± 0.011 ± 0.026 ± 0.038 ± 0.014 ± 0.059
HERCULES (Graph 3) 0.06 0.10 0.06 0.04 0.05 0.12 0.06 0.90 0.08 0.95 0.23

± 0.022 ± 0.042 ± 0.006 ± 0.009 ± 0.009 ± 0.033 ± 0.018 ± 0.043 ± 0.034 ± 0.024 ± 0.039
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