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Problem Setup

Environment

How can we learn a
causal representation?

Tasks




BISCUIT: Causal Representation Learning from Binary Interactions

Temporal Causal Representation Learning

Time step t
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Temporal Causal Representation Learning

* iVAE [Khemakhem et al., 2020] — temporality as auxiliary variable, parametric assumptions

« DMS [Lachapelle et al., 2022] - graphical assumption (mechanism sparsity), exponential family
* LEAP [Yao et al., 2022ab] - sufficient mechanism variability over regimes/environments

* Properties of Mechanisms [Ahuja et al., 2022] — known functional form of mechanisms

 CITRIS [Lippe et al., 2022] — non-parametric, known intervention targets
 ICITRIS [Lippe et al., 2023a] - instantaneous effects

BISCUIT - non-parametric, arbitrary graphs, unknown binary interactions
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BISCUIT: Binary Interactions

Key assumption: Interactions between the agent and causal variables can be described
by binary variables

Time step t+1
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BISCUIT: Binary Interactions

Key assumption: Interactions between the agent and causal variables can be described
by binary variables

 Causal variables can be continuous values, evolving stochastically over time
* Certain interactions cause unknown interventions, changing corresponding mechanisms

* Realistic assumption in many RL environments:
observational = no agent-variable interaction,
interventional = agent interacting with variable
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BISCUIT: Causal Model
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Binary Interactions enable Identifiability

* Knowing each variable has only two mechanisms helps identify difficult cases

» Example: Additive Gaussian Noise - Cf = u;(C*™L,1I}) + €;, €,;~N(0,02)

 Both true and rotated variables model the same distribution, but under interventions, only the true
variables have two means

True variables Rotated variables
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Identifiability Assumptions

Assumption 2: interaction variables of different causal variables are
not deterministic functions of each other

 Implies that two variables are not always interacted with at the same time

* Distinct interaction patterns

If the interaction variables If are independent of Ct~1, only requires
|log, K| + 2 actions/values of Rt

 Example: agent with random policy
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Identifiability Assumptions

« Assumption 3: Causal Relations can be resolved over time
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Identifiability Assumptions

Assumption 4: The causal mechanisms vary sufficiently over time or on interactions
* Prevents cases like interventional and observational distribution being identical

 Supports many common setups like additive Gaussian noise models or more complex distributions

A. (Dynamics Variability) Each variable’s log-likelihood B. (Time Variability) For any C* € C, there exist K + 1

difference is twice differentiable and not always zero: different values of Ct=1 denoted with ¢!, ..., K+l e
t ., O2A(CHCtY) for which the vectors vy, ..., vx € RET with
vC;,3C* " # 0; -
a(C,L) v — aA(Cf|Ct_1:CI) 8A(Cf|ct_1:CK+l)
L dC? o oC?

are linearly independent.
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BISCUIT: Identifiability Results

Assumption 1: Interactions between agent and causal variables can be described
by binary variables

Assumption 2: All causal variables have different interaction patterns
Assumption 3: Causal Relations can be resolved over time

Assumption 4: The causal mechanisms vary sufficiently over time or on interactions

Identifiability Result
The causal variables can be identified up to permutation and element-wise transformations.
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BISCUIT: Causal Model (Reminder)
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BISCUIT: Architecture

Latent representation
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BISCUIT: Architecture

e Loss function:

£~ Bt By [ (a7 19)]

Reconstruction Prior modeling

Encoder Decoder Prior

* Prior structure:

po@12 LR = | [ po (12570 fiRE 267
i

Binary function output
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BISCUIT: Learning Binary Variables

Prior p(z!|zt™1, 1)

If = fi(z*",RY) g1 Rt
IO [
Continuous Relaxation g[ N ]
It = tanh (f—i(zt;l'Rt)) iyl
Smooth optimization [ ]
Decrease temperature over training U4 @
[ Prior ]
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Experiments

Synthetic Environment

CausalWorld
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Synthetic Environments

* Evaluated on synthetic dataset with

additive Gaussian noise model Models
B iVAE B LEAP 2 DMS I BISCUIT (Ours)
1.00

* |dentifies causal variables well, also
under mininal bound of interactions

6 vars 9 vars 6 vars 9 vars

(a) Random Interactions (b) Minimal Interactions

19



BISCUIT: Causal Representation Learning from Binary Interactions

CausalWorld - Robotic Trifinger

* Tri-finger robot interacting with its environment and objects

 Causalvariables include object position, frictions, colors, etc.
* Action: 9-dimensional motor angles (3 per finger)

 BISCUIT identifies causal variables accurately

Accuracy of learned causal variables
(higher is better / lower is better)

Models CausalWorld
iVAE (Khemakhem et al., 2020a) 0.28/0.00
LEAP (Yao et al., 2022b) 0.30/0.00

DMS (Lachapelle et al., 2022b) 0.32/0.00
BISCUIT-NF (Ours) 0.97/0.01
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CausalWorld - Learned Interactions

F1 scores for learned interaction variables
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ITHOR

* Kitchen environment with 10 causal variables
 Cabinet (open/closed)
 Microwave (open/closed)
* Microwave (on/off)
 Egg (position, broken, cooked)
* Plate/potato (position)
e 4x Stove burner (on/off, burning)
* Toaster (on/off)

* Actions represented as x-y coordinate of a
randomly sampled object pixel

Models iTHOR
iVAE (Khemakhem et al., 2020a) 0.48 /0.35
LEAP (Yao et al., 2022b) 0.63/0.45

DMS (Lachapelle et al., 2022b)  0.61/0.40
BISCUIT-NF (Ours) 0.96/0.15
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ITHOR - Interaction Maps

* Visualize learned interaction variables by the x-y locations they are active

e Each causal variable shown in different color

Original image Overlapped image Interaction map
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ITHOR - Triplet Evaluation

* Test compositional generation ability of latent space

e Suitable across various identifiability classes

Latent vectors
Encoder Combined Generated output
latents b

é Decoder

Encoder !7
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Input Image 1

Goal
Open Cabinet
Turn on Microwave
Keep other variables fixed
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ITHOR - Triplet Evaluation

Input image 1 Input image 2 Generated Output
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Latents from image 2

Microwave Open
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ITHOR - Triplet Evaluation

Input image 1 - Input image 2 Generated Output

Latents from image 2

Stove (front-left)
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ITHOR - BISCUIT Demo

Demo: https://colab.research.google.com/github/phlippe/BISCUIT/blob/main/demo.ipynb
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Conclusion

* BISCUIT identifies causal variables from interactive environments

 Key assumption: binary interaction variables describe agent-causal variable interactions
* Applicable to a variety of robotic and embodied Al environments

* Ability to ‘imagine’ by performing latent interventions

* ldentifies actions to perform interventions

Project website and demo: phlippe.github.io/BISCUIT/
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