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Figure 2: Refinement process of PDE-Refiner during inference. Starting from an initial prediction
û1(t), PDE-Refiner uses an iterative refinement process to improve its prediction. Each step is
implemented as a denoising process, where the model takes as input the previous step’s prediction
uk(t) and tries to reconstruct added noise. By decreasing the noise variance �2

k over the K refinement
steps, PDE-Refiner focuses on all frequencies equally, including low-amplitude information.

step k � 1, we remove low-amplitude information of an earlier prediction by applying noise, e.g.122

adding Gaussian noise, to the input ûk(t) at refinement step k: ũk(t) = ûk(t) + �k✏k, ✏k ⇠ N (0, 1).123

The objective of the model is to predict this noise ✏k and use the prediction ✏̂k to denoise its input:124

ûk+1(t) = ũk(t) � �k ✏̂k. By decreasing the noise standard deviation �k over refinement steps,125

the model focuses on varying amplitude levels. With the first steps ensuring that high-amplitude126

information is captured accurately, the later steps focus on low-amplitude information, typically127

corresponding to the non-dominant frequencies. Generally, we find that an exponential decrease, i.e.128

�k = �k/K
min with �min being the minimum noise standard deviation, works well. The value of �min is129

chosen based on the frequency spectrum of the given data. For example, for the KS equation, we use130

�2
min = 2 · 10�7. We train the model by denoising ground truth data at different refinement steps:131

Lk(u, t) = E✏k⇠N (0,1)

⇥
k✏k � NO (u(t) + �k✏k, u(t � �t), k) k22

⇤
(4)

Crucially, by using ground truth samples in the refinement process during training, the model learns to132

focus on only predicting information with a magnitude below the noise level �k and ignore potentially133

larger errors that, during inference, could have occurred in previous steps. To train all refinement steps134

equally well, we uniformly sample k for each training example: L(u, t) = Ek⇠U(0,K)

⇥
Lk(u, t)

⇤
.135

At inference time, we predict a solution u(t) from u(t � �t) by performing the K refinement steps,136

where we sequentially use the prediction of a refinement step as the input to the next step. While the137

process allows for any noise distribution, independent Gaussian noise has the preferable property138

that it is uniform across frequencies. Therefore, it removes information equally for all frequencies,139

while also creating a prediction target that focuses on all frequencies equally. We empirically verify140

in Section 4.1 that PDE-Refiner even improves on low frequencies with small amplitudes.141

3.1 Formulating PDE-Refiner as a Diffusion Model142

Denoising processes have been most famously used in diffusion models as well [12, 28–30, 59, 66, 74].143

Denoising diffusion probabilistic models (DDPM) randomly sample a noise variable x0 ⇠ N (0, I)144

and sequentially denoise it until the final prediction, xK , is distributed according to the data:145

p✓(x0:K) := p(x0)
K�1Y

k=0

p✓(xk+1|xk), p✓(xk+1|xk) = N (xk+1;µ✓(xk, k),⌃✓(xk, k)) , (5)

where K is the number of diffusion steps. For neural PDE solving, one would want p✓(xK) to model146

the distribution over solutions, xK = u(t), while being conditioned on the previous time step u(t �147

�t), i.e., p✓(u(t)|u(t � �t)). Despite the similar use of a denoising process, PDE-Refiner sets itself148

apart from standard DDPMs in several key aspects. First, diffusion models typically aim to model149

diverse, multi-modal distributions like in image generation, while the PDE solutions we consider here150

are deterministic. This necessitates extremely accurate predictions with only minuscule errors. PDE-151

Refiner accommodates this by employing an exponentially decreasing noise scheduler with a very low152
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• Task: use NNs to predict next time step of a PDE
• Insights on long-horizon autoregressive predictions:
• MSE models neglect low-amplitude spatial frequencies
• Low short-term impact, but high long-term impact

Example: Kuramoto-Sivashinsky 1D equation
𝑢! + 𝑢𝑢" + 𝑢"" + 𝜈𝑢"""" = 0
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PROBLEM SETTING EXPERIMENTS – 1D Kuramoto-Sivashinsky Equation

PDE-REFINER

• Iterative refinement process to improve low amplitudes
• Denoising process with initial prediction of common MSE
• Noise removes low-amplitude info, reconstruct to refine
• Decreasing noise variance to focus on all amplitude levels

Key differences to common Diffusion models:
• Target is deterministic and initial prediction is the signal
• Exponential noise schedule with very few steps (1-4)

EXPERIMENTS – 2D Kolmogorov Flow

• Variant of incompressible Navier-Stokes
• GT is classical solver on 2048x2048, trained on 64x64
• PDE-Refiner outperforms neural and hybrid solvers

• Trained on 1D KS with res 256, Δt=0.8s, U-Net operators 
• PDE-Refiner significantly improves long-horizon preds
• Denoising gives accurate long-horizon uncertainty estim.

Ground Truth PDE-Refiner

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Table 1: Duration of high correlation (> 0.8) on the 2D
Kolmogorov flow. Results for classical PDE solvers and
hybrid methods taken from Sun et al. (2023).

Method Corr. > 0.8 time

Classical PDE Solvers
DNS - 64⇥ 64 2.805
DNS - 1024⇥ 1024 8.752

Hybrid Methods
LC (Kochkov et al., 2021) 7.630
LI (Kochkov et al., 2021) 7.910
TSM (Sun et al., 2023) 9.481

ML Surrogates
MSE training - FNO 6.451 ± 0.105
MSE training - U-Net 9.663 ± 0.117
PDE-Refiner - U-Net 10.659 ± 0.092

ent resolutions, and state-of-the-art hybrid machine learning
solvers (Kochkov et al., 2021; Sun et al., 2023), which esti-
mate the convective flux u⌦u via neural networks. Learned
Interpolation (LI) (Kochkov et al., 2021) takes the previous
solution u(t � �t) as input to predict u(t), similar to PDE-
Refiner. In contrast, the Temporal Stencil Method (TSM)
Sun et al. (2023) combines information from multiple pre-
vious time steps using HiPPO features (Gu et al., 2020;
2022). We also compare PDE-Refiner to a Learned Correc-
tion model (LC) (Kochkov et al., 2021; Um et al., 2020),
which corrects the outputs of a classical solver with neu-
ral networks. For evaluation, we roll out the models on the
16 test trajectories and determine the Pearson correlation
with the ground truth in terms of the scalar vorticity field
! = @xuy � @yux. Following previous work (Sun et al.,
2023), we report in Table 1 the time until which the average
correlation across trajectories falls below 0.8.

Results. Similar to previous work (Gupta & Brandstetter,
2022; Lu et al., 2022), we find that modern U-Nets outper-
form FNOs on the 2D domain for long rollouts. Our MSE-
trained U-Net already surpasses all classical and hybrid PDE
solvers. This result highlights the strength of our baselines,
and improving upon those poses a significant challenge.
Nonetheless, PDE-Refiner manages to provide a substantial
gain in performance, remaining accurate 32% longer than
the best single-input hybrid method and 10% longer than
the best multi-input hybrid methods and MSE model. We
reproduce the frequency plots of Figure 4 for this dataset in
Appendix C.5. The plots exhibit a similar behavior of both
models. Compared to the KS equation, the Kolmogorov
flow has a shorter (due to the resolution) and flatter spatial
frequency spectrum. This accounts for the smaller relative
gain of PDE-Refiner on the MSE baseline here.

Speed Comparison. We evaluate the speed of the rollout
generation for the test set (16 trajectories of 20 seconds) of
three best solvers on an NVIDIA A100 GPU. The MSE U-

Net generates the trajectories in 4.04 seconds (±0.01), with
PDE-Refiner taking 4 times longer (16.53 ± 0.04 seconds)
due to four model calls per step. With that, PDE-Refiner is
still faster than the best hybrid solver, TSM, which needs
20.25 seconds (±0.05). In comparison to the ground truth
solver at resolution 2048⇥ 2048 with 31 minute generation
time on GPU, all surrogates provide a significant speedup.

5. Conclusion
In this paper, we conduct a large-scale analysis of tempo-
ral rollout strategies for neural PDE solvers, identifying that
the neglect of low-amplitude information often limits accu-
rate rollout times. To address this issue, we introduce PDE-
Refiner, a novel model-class that employs an iterative refine-
ment process to accurately model all frequency components.
This approach remains considerably longer accurate during
rollouts on two fluid dynamic datasets, effectively overcom-
ing the common pitfall.

Limitations. The primary limitation of PDE-Refiner is
its increased computation time per prediction. Although
still faster than hybrid and classical solvers, future work
could investigate reducing compute for early refinement
steps, or applying distillation and enhanced samplers to ac-
celerate refinement, as seen in diffusion models (Salimans
& Ho, 2022; Berthelot et al., 2023; Karras et al., 2022; Wat-
son et al., 2022). Another challenge is the incompatibility
of PDE-Refiner with FNOs due to the modeling of high-
frequency noise, which thus presents an interesting avenue
for future work. Further architectures like Transformers
(Vaswani et al., 2017; Dosovitskiy et al., 2021) can be ex-
plored too, having been shown to also suffer from spatial
frequency biases for PDEs (Chattopadhyay & Hassanzadeh,
2023). Lastly, we have only investigated additive Gaussian
noise. Recent blurring diffusion models (Hoogeboom &
Salimans, 2023; Lee et al., 2022) focus on different spatial
frequencies over the sampling process, making them a po-
tentially suitable option for PDE solving as well.
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