

PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Phillip Lippe^{1,2}, Bas S. Veeling¹, Paris Perdikaris¹, Richard E. Turner¹, Johannes Brandstetter¹

¹Microsoft Research Al4Science, ²University of Amsterdam

Project Website

(Large-scale) PDE systems are ubiquitous

Earthquakes

Heart dynamics

Weather prediction

Galaxy collisions

Plasma physics

Airplane design

Electronic structure

Tumor growth

Solving PDEs – the traditional way

• Formulation of time dependent Partial Differential Equations (PDEs):

 $\partial_t \mathbf{u} = F(t, \mathbf{x}, \mathbf{u}, \partial_{\mathbf{x}} \mathbf{u}, \partial_{\mathbf{x}\mathbf{x}} \mathbf{u}, ...) \qquad (t, \mathbf{x}) \in [0, T] \times \mathbb{X}$ $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}^0(\mathbf{x}), \qquad B[\mathbf{u}](t, x) = 0 \qquad \mathbf{x} \in \mathbb{X}, \ (t, \mathbf{x}) \in [0, T] \times \partial \mathbb{X}$

- Partition spatial and temporal domain into grid
- Estimate spatial derivatives, e.g., via finite difference
- Solve time derivative with classical ODE solvers, e.g., Runge-Kutta methods

Example PDEs

• 2D Kolmogorov Flow (KM)

- Fluid Dynamics
- Incompressible Navier-Stokes
- Known for its chaotic behavior
- Accurate solving requires expensive, high resolution

$$\partial_t \mathbf{u} + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) = \nu \nabla^2 \mathbf{u} - \frac{1}{\rho} \nabla p + \mathbf{f}$$

- Fourth-order nonlinear PDE
- Fluid Dynamics, e.g., plasmas and flame propagation
- Rich dynamical characteristics and chaotic behavior

$$u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$$

Time

Challenges for classical solvers

- Small errors have large long-term impact in chaotic PDEs
- Requires small time steps and/or large resolution \Rightarrow expensive
- Example: Kolmogorov Flow
 - Requires resolution of 2048x2048
 - Time step of 0.007s
 - 20 second rollout takes > 30 minutes on an A100

• Can we use ML to solve PDEs more efficiently?

Neural PDE Solvers

• Neural Operators learn to predict future solutions

- Trained on one-step predictions
- Long horizon predictions via autoregressive rollout

Neural PDE Solvers - Desiderata

1. Long-Horizon Accuracy

• Remain close to ground truth solution for long time

2. Long-Horizon Stability

• Generate physically realistic solutions and not diverge

3. Uncertainty Estimation

• Know when not to trust your neural surrogate anymore

Neural PDE Solvers - Desiderata

1. Long-Horizon Accuracy

• Remain close to ground truth solution for long time

2. Long-Horizon Stability

• Generate physically realistic solutions and not diverge

3. Uncertainty Estimation

• Know when not to trust your neural surrogate anymore

Challenges of Accurate Long Rollouts

Training Neural PDE Solvers

• Commonly trained with one-step MSE:

$$\mathcal{L}_{\text{MSE}} = \|u(t) - \text{NO}(u(t - \Delta t))\|^2$$

- Tradeoff in time step size
 - Large time steps give fast solvers, but harder to learn
 - Small time steps are easier to learn and generalize, but require many autoregressive steps
 - In practice, small time steps commonly achieve better performance
 - Evaluate on rolling out model on its own predictions
 - Check when it diverges from ground truth, e.g., in terms of correlation of MSE loss

Errors during Autorégressive Rollout

Three main sources of error during rollout:

1. Error Accumulation

- Models estimate the temporal difference between time steps, added to the original input
- Errors on the initial input are forwarded to future steps during rollout

2. Error Propagation

• Errors on network input influence the predicted temporal difference / dynamics

3. Input Distribution Shift

- Models are trained on ground truth data
- Predictions with errors may have a different distributions
- Can cause the model to diverge and make arbitrary predictions

- Only error accumulation
- Consecutive errors are highly correlated ⇒ quadratic increase of error

$$\varepsilon_t \sim t^2 \varepsilon_0$$

- Mainly error accumulation
- Errors become less correlated
 ⇒ slower increase of error

$$\varepsilon_t \sim t^{1.5} \varepsilon_0$$

- Error propagation dominates
- Errors exponentially increase, diverge from ground truth
- Predictions yet appear physically realistic

- Input Distribution Shift occurs much later in our setup
- Often after > 10 times longer rollout than divergence time

Rollout potentially improves by:

- Lower one-step loss
- Delaying error propagation (regime 3)

Delaying Error Propagation

• Example: 1D Kuramoto-Sivashinsky equation (KS)

$$u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$$

Spatial domain

Time

Delaying Error Propagation

• Example: 1D Kuramoto-Sivashinsky equation (KS)

Non-linear term causes all spatial _____ frequencies to interact long-term High-order derivatives increase importance of high frequencies in spatial domain

For long accurate rollouts, model **all** spatial frequencies accurately Errors in higher frequencies have low short-term, but **high long-term impact**

 $u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$

Delaying Error Propagation

• Many challenging PDEs follow similar pattern, for example:

KS equation
$$u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$$

Burger's equation $u_t + uu_x + u_{xx} = 0$
Korteweg-de Vries equation $u_t + 6uu_x + u_{xxx} = 0$
KdV-Burger's equation $u_t + 2uu_x - \nu u_{xx} + \mu u_{xxx} = 0$

For long accurate rollouts, model **all** spatial frequencies accurately Errors in higher frequencies have low short-term, but **high long-term impact**

Case Study: Kuramoto-Sivashińsky

• How well do MSE-trained surrogates cover the frequency spectrum?

- Neural surrogates focus on **dominating** frequencies, losing high frequencies
- Inherently limits the maximum rollout time

Challenges of Accurate Long Rollouts – Summary

- Main causes for divergence: error accumulation and error propagation
- History information improves one-step, but accelerates error propagation
- MSE surrogates poorly model low-amplitude frequencies, inevitably setting a maximum possible rollout time

How can we capture the **whole** frequency spectrum better?

Achieving Accurate Long Rollouts via an Iterative Refinement Process

Idea

- Goal: improve prediction of low-amplitude frequencies
- Difficult to predict all frequencies perfectly at once
 ⇒ iterative refinement process to finetune the prediction step-by-step
- At each refinement step, focus on information/error below a certain amplitude
 - Implemented via a denoising objective
- Use multiple refinement steps to cover larger spectrum

PDE-Refiner – Training

• Initial prediction: common MSE objective

$$\mathcal{L}^{0}(u,t) = \|u(t) - \operatorname{NO}\left(\hat{u}^{0}(t), u(t - \Delta t), 0\right)\|_{2}^{2}$$

- Refinement steps: denoise ground truth data
 - Training on GT learns to model the data's frequency spectrum

$$\mathcal{L}^{k}(u,t) = \mathbb{E}_{\epsilon^{k} \sim \mathcal{N}(0,1)} \left[\|\epsilon_{k} - \operatorname{NO}\left(u(t) + \sigma_{k}\epsilon_{k}, u(t - \Delta t), k\right)\|_{2}^{2} \right]$$

• Use exponential decreasing noise variance $\sigma_k = \sigma_{\min}^{k/K}$

PDE-Refiner – Relation to Diffusion Models

- Popular usage of denoising: Diffusion Models (DDPM) [Ho et al., 2020]
- Key differences of PDE-Refiner to DDPMs:
 - 1. GT is deterministic \Rightarrow exponential decreasing noise schedule with very small minimum
 - 2. Speed is of essence for application \Rightarrow very few denoising steps (usually 1-4)
 - 3. Different objective \Rightarrow predicts signal at initial step

Figure credit: [Ho et al., 2020] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *NeurIPS, 2020.*

PDE-Refiner – Experimental Setup

• 1D Kuramoto-Sivashinsky Equation

- Train models on simulated data from classical solver as ground truth
- Varying initial condition, spatial size, and simulated time step
- Different neural operator architectures (U-Net, FNO, Dilated ResNets)
- Evaluation metric: time until correlation between rollout prediction and GT goes below 0.8

PDE-Refiner – Frequency Spectrum KS equation

• PDE-Refiner models a larger frequency band accurately

PDE-Refiner – Frequency Spectrum KS equation

• Refinement steps focus on different amplitude levels

PDE-Refiner – Rollout Performance (U-Net)

High-Correlation Rollout Times on the Kuramoto-Sivashinsky equation

PDE-Refiner – Rollout Performance (Dilated ResNets)

PDE-Refiner – Rollout Performance (FNOs)

High-Correlation Rollout Times of FNOs on the Kuramoto-Sivashinsky equation

PDE-Refiner – Delaying Error Propagation

- MSE loss of all models similar for first 20 seconds
- Modeling more frequencies allows PDE-Refiner to delay error propagation
- Results in longer stable rollouts

PDE-Refiner – Uncertainty Estimation

PDE-Refiner – Uncertainty Estimation

- Estimating accurate rollout time by measuring cross-correlation between sampled trajectories
- Accurate uncertainty estimates
- Outperforms other simple uncertainty estimation methods while more efficient than model ensemble

PDE-Refiner – 2D-Kolmogorov Flow

• 2D Kolmogorov Flow

- Generated at 2048x2048 resolution, downscaled to 64x64
- 2-channel input, evaluated on vorticity

PDE-Refiner – 2D-Kolmogorov Flow

- PDE-Refiner outperforms SOTA hybrid solvers
- Gain over MSE baseline smaller than on KS equation
 - Flatter frequency spectrum
 - Smaller resolution
 - Generally higher loss, stronger models possible

Method	Corr. > 0.8 time
Classical PDE Solvers	
DNS - 64×64	2.805
DNS - 128×128	3.983
DNS - 256×256	5.386
DNS - 512×512	6.788
DNS - 1024×1024	8.752
Hybrid Methods	
LC [42, 79] - CNN	6.900
LC [42, 79] - FNO	7.630
LI [42] - CNN	7.910
TSM [75] - FNO	7.798
TSM [75] - CNN	8.359
TSM [75] - HiPPO	9.481
ML Surrogates	
MSE training - FNO	6.451 ± 0.105
MSE training - U-Net	9.663 ± 0.117
PDE-Refiner - U-Net	$\textbf{10.659} \pm 0.092$

PDE-Refiner – 2D-Kolmogorov Flow

- Sampling multiple trajectories estimates uncertainty
- PDE-Refiner slightly overconfident due to small dataset size

PDE-Refiner – Speed Comparison

• Speed comparison on generating 16 trajectories of 20 seconds

- MSE model: 4 seconds
- PDE-Refiner: (K+1) x MSE = 16 seconds
- Hybrid solver: 20 seconds
- Classical solver: 31 minutes
- PDE-Refiner offers tunable tradeoff between runtime and accuracy

- Modeling a large spatial frequency band is key for long accurate rollouts
- PDE-Refiner achieves this by an iterative refinement process, gaining up to 30% longer rollouts across different neural operators and PDEs
- Denoising process inherently learns accurate uncertainty estimate
- PDE-Refiner offers flexible tradeoff between accuracy and speed
- Code coming soon in <u>PDEArena</u>

PDE-Refiner: Achieving Accurate Long Rollouts with Neural PDE Solvers

Phillip Lippe, Bas S. Veeling, Paris Perdikaris, Richard E. Turner, Johannes Brandstetter

Project Website

Questions?

