
PDE-Refiner: Achieving Accurate Long 
Rollouts with Neural PDE Solvers
Phillip Lippe1,2, Bas S. Veeling1, Paris Perdikaris1, Richard E. Turner1, Johannes Brandstetter1

1Microsoft Research AI4Science, 2University of Amsterdam
Project Website



(Large-scale) PDE systems are ubiquitous

Earthquakes Heart dynamics Weather prediction Galaxy collisions

Plasma physics Airplane design Electronic structure Tumor growth



• Formulation of time dependent Partial Differential Equations (PDEs):

• Partition spatial and temporal domain into grid
• Estimate spatial derivatives, e.g., via finite difference
• Solve time derivative with classical ODE solvers, 

e.g., Runge-Kutta methods

Solving PDEs – the traditional way

Example: Heat Equation (credit)

https://en.wikipedia.org/wiki/Partial_differential_equation


Example PDEs

• 2D Kolmogorov Flow (KM)
• Fluid Dynamics
• Incompressible Navier-Stokes
• Known for its chaotic behavior
• Accurate solving requires 

expensive, high resolution

• 1D Kuramoto-Sivashinsky Equation (KS)
• Fourth-order nonlinear PDE
• Fluid Dynamics, e.g., 

plasmas and flame propagation
• Rich dynamical characteristics 

and chaotic behavior

Time



• Small errors have large long-term impact in chaotic PDEs
• Requires small time steps and/or large resolution ⇒ expensive

• Example: Kolmogorov Flow
• Requires resolution of 2048x2048
• Time step of 0.007s
• 20 second rollout takes >30 minutes on an A100

• Can we use ML to solve PDEs more efficiently?

Challenges for classical solvers



• Neural Operators learn to predict future solutions

Neural PDE Solvers

Neural 
Network

• Trained on one-step predictions
• Long horizon predictions via autoregressive rollout

Neural 
Network

…



Neural PDE Solvers - Desiderata

• Remain close to ground truth solution for long time

1. Long-Horizon Accuracy

• Generate physically realistic solutions and not diverge

2. Long-Horizon Stability

• Know when not to trust your neural surrogate anymore

3. Uncertainty Estimation



Neural PDE Solvers - Desiderata

• Remain close to ground truth solution for long time

1. Long-Horizon Accuracy

• Generate physically realistic solutions and not diverge

2. Long-Horizon Stability

• Know when not to trust your neural surrogate anymore

3. Uncertainty Estimation



Challenges of Accurate Long Rollouts



• Commonly trained with one-step MSE:

• Tradeoff in time step size
• Large time steps give fast solvers, but harder to learn
• Small time steps are easier to learn and generalize, but require many autoregressive steps
• In practice, small time steps commonly achieve better performance

• Evaluate on rolling out model on its own predictions
• Check when it diverges from ground truth, e.g., in terms of correlation of MSE loss

Training Neural PDE Solvers



Errors during Autoregressive Rollout

• Models estimate the temporal difference between time steps, added to the original input
• Errors on the initial input are forwarded to future steps during rollout

1. Error Accumulation

• Errors on network input influence the predicted temporal difference / dynamics 

2. Error Propagation

• Models are trained on ground truth data
• Predictions with errors may have a different distributions
• Can cause the model to diverge and make arbitrary predictions

3. Input Distribution Shift

Three main sources of error during rollout:



Regime 1
� Only error accumulation
� Consecutive errors are highly 

correlated ⇒ quadratic increase 
of error

𝜀! ∼ 𝑡"𝜀#

Autoregressive Error Propagation

2D Kolmogorov Flow



Regime 2
� Mainly error accumulation
� Errors become less correlated 
⇒ slower increase of error

𝜀! ∼ 𝑡$.&𝜀#

Autoregressive Error Propagation

2D Kolmogorov Flow



Regime 3
� Error propagation dominates
� Errors exponentially increase, 

diverge from ground truth
� Predictions yet appear physically 

realistic

Autoregressive Error Propagation

2D Kolmogorov Flow



Regime 4
� Input Distribution Shift occurs 

much later in our setup
� Often after >10 times longer 

rollout than divergence time 

Autoregressive Error Propagation

2D Kolmogorov Flow



Autoregressive Error Propagation

Rollout potentially improves by:
� Lower one-step loss
� Delaying error propagation (regime 3)

2D Kolmogorov Flow



• Example: 1D Kuramoto-Sivashinsky equation (KS)

Delaying Error Propagation

Time

Spatial 
domain

Spatial Frequency Spectrum
Example Trajectory

Dominating 
frequencies



• Example: 1D Kuramoto-Sivashinsky equation (KS)

Delaying Error Propagation

High-order derivatives increase importance
of high frequencies in spatial domain

Non-linear term causes all spatial
frequencies to interact long-term 

For long accurate rollouts, model all spatial frequencies accurately
Errors in higher frequencies have low short-term, but high long-term impact



• Many challenging PDEs follow similar pattern, for example:

Delaying Error Propagation

For long accurate rollouts, model all spatial frequencies accurately
Errors in higher frequencies have low short-term, but high long-term impact

KS equation

Burger’s equation

Korteweg-de Vries equation

KdV-Burger’s equation



• How well do MSE-trained surrogates cover the frequency spectrum?

Case Study: Kuramoto-Sivashinsky

• Neural surrogates focus on dominating frequencies, losing high frequencies
• Inherently limits the maximum rollout time



• Main causes for divergence: error accumulation and error propagation

• History information improves one-step, but accelerates error propagation

• MSE surrogates poorly model low-amplitude frequencies, inevitably setting a 
maximum possible rollout time

Challenges of Accurate Long Rollouts – Summary

How can we capture the whole frequency spectrum better? 



PDE-Refiner

Achieving Accurate Long Rollouts via an Iterative Refinement Process



• Goal: improve prediction of low-amplitude frequencies

• Difficult to predict all frequencies perfectly at once
⇒ iterative refinement process to finetune the prediction step-by-step

• At each refinement step, focus on information/error below a certain amplitude
• Implemented via a denoising objective

• Use multiple refinement steps to cover larger spectrum

Idea



PDE-Refiner



PDE-Refiner



PDE-Refiner



PDE-Refiner



PDE-Refiner – Training 

• Initial prediction: common MSE objective

• Refinement steps: denoise ground truth data
• Training on GT learns to model the data’s frequency spectrum

• Use exponential decreasing noise variance 𝜎' = 𝜎()*
'/,

=0



• Popular usage of denoising: Diffusion Models (DDPM) [Ho et al., 2020]

• Key differences of PDE-Refiner to DDPMs:
1. GT is deterministic ⇒ exponential decreasing noise schedule with very small minimum
2. Speed is of essence for application ⇒ very few denoising steps (usually 1-4)
3. Different objective ⇒ predicts signal at initial step

PDE-Refiner – Relation to Diffusion Models

Figure credit: [Ho et al., 2020] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. NeurIPS, 2020.



• 1D Kuramoto-Sivashinsky Equation
• Train models on simulated data from classical solver as ground truth
• Varying initial condition, spatial size, and simulated time step
• Different neural operator architectures (U-Net, FNO, Dilated ResNets)
• Evaluation metric: time until correlation between rollout prediction and GT goes below 0.8

PDE-Refiner – Experimental Setup 



PDE-Refiner – Frequency Spectrum KS equation

• PDE-Refiner models a larger frequency band accurately



PDE-Refiner – Frequency Spectrum KS equation

• Refinement steps focus on different amplitude levels



PDE-Refiner – Rollout Performance (U-Net)



PDE-Refiner – Rollout Performance (Dilated ResNets)

Ba
sel
ine

His
tor

y 2

4x
par

am
ete

rs

En
sem

ble

Pu
shf

orw
ard

Sob
ole

v k
= 0

Sob
ole

v k
= 1

MNO

Err
or

Co
rre

cti
on

Err
or

Pre
dic

tio
n

1 s
tep

2 s
tep

s
3 s

tep
s
4 s

tep
s
8 s

tep
s

3 s
tep

s -
Mean

Co
sin

e S
che

du
le

Ou
r S

che
du
le

50

60

70

80

90

100

110

H
ig
h
-c
or
re
la
ti
on

ti
m
e
(i
n
se
co
n
d
s)

High-Correlation Rollout Times of Dilated ResNets on the Kuramoto-Sivashinsky equation

MSE Training

Alternative Losses

PDE-Refiner (Ours)

Di↵usion Ablations

80.3s

66.1s

79.7s
83.0s

79.7s 78.1s

64.4s

74.9s
80.3s 78.1s

89.4s
93.4s

98.8s 99.9s 99.9s 99.5s

77.3s

87.8s

1



PDE-Refiner – Rollout Performance (FNOs)



• MSE loss of all models similar 
for first 20 seconds

• Modeling more frequencies 
allows PDE-Refiner to delay 
error propagation

• Results in longer stable 
rollouts

PDE-Refiner – Delaying Error Propagation



PDE-Refiner – Uncertainty Estimation



• Estimating accurate rollout time 
by measuring cross-correlation 
between sampled trajectories

• Accurate uncertainty estimates

• Outperforms other simple 
uncertainty estimation methods 
while more efficient than model 
ensemble

PDE-Refiner – Uncertainty Estimation



• 2D Kolmogorov Flow
• Generated at 2048x2048 resolution, downscaled to 64x64
• 2-channel input, evaluated on vorticity

PDE-Refiner – 2D Kolmogorov Flow



PDE-Refiner – 2D Kolmogorov Flow

• PDE-Refiner outperforms SOTA hybrid 
solvers

• Gain over MSE baseline smaller than on 
KS equation
• Flatter frequency spectrum
• Smaller resolution
• Generally higher loss, stronger models possible



PDE-Refiner – 2D Kolmogorov Flow

Ground Truth
Sampled Predictions

• Sampling multiple trajectories estimates 
uncertainty

• PDE-Refiner slightly overconfident due 
to small dataset size



• Speed comparison on generating 16 trajectories of 20 seconds
• MSE model: 4 seconds
• PDE-Refiner: (K+1) x MSE =16 seconds
• Hybrid solver: 20 seconds
• Classical solver: 31 minutes

• PDE-Refiner offers tunable tradeoff between runtime and accuracy

PDE-Refiner – Speed Comparison



• Modeling a large spatial frequency band is key for long accurate rollouts

• PDE-Refiner achieves this by an iterative refinement process, gaining up to 30% 
longer rollouts across different neural operators and PDEs

• Denoising process inherently learns accurate uncertainty estimate

• PDE-Refiner offers flexible tradeoff between accuracy and speed

• Code coming soon in PDEArena

Summary

https://microsoft.github.io/pdearena/


PDE-Refiner: Achieving Accurate Long 
Rollouts with Neural PDE Solvers
Phillip Lippe, Bas S. Veeling, Paris Perdikaris, Richard E. Turner, Johannes Brandstetter

Project Website

Questions?


