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(Large-scale) PDE systems are ubiquitous

Earthquakes Heart dynamics Weather prediction Galaxy collisions

Plasma physics Airplane design Electronic structure Tumor growth



• Neural Operators learn to predict future solutions

Neural PDE Solvers
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• Trained on one-step predictions
• Long horizon predictions via autoregressive rollout
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How can Neural Operators 
obtain long accurate rollouts?



• Example: 1D Kuramoto-Sivashinsky equation (KS)
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• Example: 1D Kuramoto-Sivashinsky equation (KS)

Case Study: Kuramoto-Sivashinsky

High-order derivatives increase importance
of high frequencies in spatial domain

Non-linear term causes all spatial
frequencies to interact long-term 

For long accurate rollouts, model all spatial frequencies accurately
Errors in higher frequencies have low short-term, but high long-term impact



• How well do MSE-trained surrogates cover the frequency spectrum?

Case Study: Kuramoto-Sivashinsky

• Neural surrogates focus on dominating frequencies, losing high frequencies
• Inherently limits the maximum rollout time



PDE-Refiner
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• Popular usage of denoising: Diffusion Models (DDPM) [Ho et al., 2020]

• Key differences of PDE-Refiner to DDPMs:
1. GT is deterministic ⇒ exponential decreasing noise schedule with very small minimum
2. Speed is of essence for application ⇒ very few denoising steps (usually 1-4)
3. Different objective ⇒ predicts signal at initial step

PDE-Refiner – Relation to Diffusion Models

Figure credit: [Ho et al., 2020] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. NeurIPS, 2020.



PDE-Refiner – Frequency Spectrum KS equation

• PDE-Refiner models a larger frequency band accurately



PDE-Refiner – Frequency Spectrum KS equation

• Refinement steps focus on different amplitude levels



PDE-Refiner – Rollout Performance (U-Net)



PDE-Refiner – Rollout Performance (FNO)



PDE-Refiner – Uncertainty Estimation



PDE-Refiner – 2D Kolmogorov Flow

• PDE-Refiner also improves on 2D equations
• Speed comparison 

• MSE model: 4 seconds
• PDE-Refiner: (K+1) x MSE =16 seconds
• Hybrid solver: 20 seconds
• Classical solver: 31 minutes

Ground Truth Predictions



• Modeling a large spatial frequency band is key for long accurate rollouts

• PDE-Refiner achieves this by an iterative refinement process, gaining up to 30% 
longer rollouts

• Denoising process inherently learns accurate uncertainty estimate

• PDE-Refiner offers flexible tradeoff between accuracy and speed

Summary
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