

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Phillip Lippe^{1,2}, Bas S. Veeling¹, Paris Perdikaris¹, Richard E. Turner¹, Johannes Brandstetter¹

¹Microsoft Research Al4Science, ²University of Amsterdam

Project Website

(Large-scale) PDE systems are ubiquitous

Earthquakes

Heart dynamics

Weather prediction

Galaxy collisions

Plasma physics

Airplane design

Electronic structure

Tumor growth

Neural PDE Solvers

• Neural Operators learn to predict future solutions

- Trained on one-step predictions
- Long horizon predictions via autoregressive rollout

How can Neural Operators obtain long accurate rollouts?

Case Study: Kuramoto-Sivashińsky

• Example: 1D Kuramoto-Sivashinsky equation (KS)

$$u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$$

Example Trajectory

Time

Case Study: Kuramoto-Sivashińsky

• Example: 1D Kuramoto-Sivashinsky equation (KS)

Non-linear term causes all spatial ______ frequencies to interact long-term High-order derivatives increase importance of high frequencies in spatial domain

For long accurate rollouts, model **all** spatial frequencies accurately Errors in higher frequencies have low short-term, but **high long-term impact**

 $u_t + uu_x + u_{xx} + \nu u_{xxxx} = 0$

Case Study: Kuramoto-Sivashińsky

• How well do MSE-trained surrogates cover the frequency spectrum?

- Neural surrogates focus on **dominating** frequencies, losing high frequencies
- Inherently limits the maximum rollout time

PDE-Refiner – Relation to Diffusion Models

- Popular usage of denoising: Diffusion Models (DDPM) [Ho et al., 2020]
- Key differences of PDE-Refiner to DDPMs:
 - 1. GT is deterministic \Rightarrow exponential decreasing noise schedule with very small minimum
 - 2. Speed is of essence for application \Rightarrow very few denoising steps (usually 1-4)
 - 3. Different objective \Rightarrow predicts signal at initial step

Figure credit: [Ho et al., 2020] Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. *NeurIPS, 2020.*

PDE-Refiner – Frequency Spectrum KS equation

• PDE-Refiner models a larger frequency band accurately

PDE-Refiner – Frequency Spectrum KS equation

• Refinement steps focus on different amplitude levels

PDE-Refiner – Rollout Performance (U-Net)

High-Correlation Rollout Times on the Kuramoto-Sivashinsky equation

PDE-Refiner – Rollout Performance (FNO)

High-Correlation Rollout Times of FNOs on the Kuramoto-Sivashinsky equation

PDE-Refiner – Uncertainty Estimation

PDE-Refiner – 2D-Kolmogorov Flow

- PDE-Refiner also improves on 2D equations
- Speed comparison
 - MSE model: 4 seconds
 - PDE-Refiner: (K+1) x MSE = 16 seconds
 - Hybrid solver: 20 seconds
 - Classical solver: 31 minutes

Method	Corr. > 0.8 time
Classical PDE Solvers	
DNS - 64×64	2.805
DNS - 128×128	3.983
DNS - 256×256	5.386
DNS - 512×512	6.788
DNS - 1024×1024	8.752
Hybrid Methods	
LC [42, 79] - CNN	6.900
LC [42, 79] - FNO	7.630
LI [42] - CNN	7.910
TSM [75] - FNO	7.798
TSM [75] - CNN	8.359
TSM [75] - HiPPO	9.481
ML Surrogates	
MSE training - FNO	6.451 ± 0.105
MSE training - U-Net	9.663 ± 0.117
PDE-Refiner - U-Net	$\textbf{10.659} \pm 0.092$

- Modeling a large spatial frequency band is key for long accurate rollouts
- PDE-Refiner achieves this by an iterative refinement process, gaining up to 30% longer rollouts
- Denoising process inherently learns accurate uncertainty estimate
- PDE-Refiner offers flexible tradeoff between accuracy and speed

Modeling Accurate Long Rollouts with Temporal Neural PDE Solvers

Phillip Lippe, Bas S. Veeling, Paris Perdikaris, Richard E. Turner, Johannes Brandstetter

Visit our poster!

Project Website

