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Task-oriented 
Dialogue System

User

Online Shopping
Customer Service

…

How can we adapt automated dialogue systems to have more natural conversations?
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Template-based Dialogue System

Intent 
classifier

<Product> is in your shopping list.

I was not able to find <Product>.

Can I do something else for you?

Response
Two apples are in your shopping list.User request

Add two apples to my shopping list.

Corpus-based/Neural Dialogue System

Neural Network Response
Two apples are in your shopping list.

User request
Add two apples to my shopping list.
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Template-based Dialogue System

Paraphrasing Corpus-based Dialogue System

<Product> is in your shopping list.

User request
- Can you add two apples to my shopping list?

- Two apples please.

Responses
- Sure, two apples are added to your shopping list. How else I can help you with?

- I added two apples. Anything else?
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Response

Context
“Sure, I have found…“

Semantic
“Your shopping list…”

Paraphrasing
“What/How about…”, 

TemplateConversationNoise
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• MULTIWOZ (Multi-domain Wizard of Oz) dataset
• Human-to-Human dialogues

Ask for closest restaurant
Want to start from …

User Service

Hotels: …
Restaurants: …

• Assumption: Two responses with the same dialogue actions are paraphrases in different 
contexts
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Paraphrased 
Response

Template 
Response

Last N 
conversation turns

Ground Truth 
Response

Context 
Style

Response 
Style

Response 
Semantic

Response 
DecoderContent Slots

<Name=…>, <Area=…>
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needHi , I ... Sure , may I ... I would like to ...

User UserBot

Bot

There are # hotels ...

Response

semantics

I found # hotels ...

...

I found # hotels<s>

Bot

Bot

I found # hotels ...

Ground Truth Template

Context Style

Prototypes

Response

Style

Context

Style

Response Style
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needHi , I ... Sure , may I ... I would like to ...

User UserBot

Bot

There are # hotels ...

Response

semantics

I found # hotels ...

...

I found # hotels<s>

Bot

Bot

I found # hotels ...

Ground Truth Template

Context Style

Prototypes

Response

Style

Context

Style

Response Style

Prototypes

Only during

training

3 2 1

4

Semantic attentionStyle attention

Decoder

• Bi-LSTM encoder with global attention

• Single, fixed-sized feature vector 
representation
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needHi , I ... Sure , may I ... I would like to ...

User UserBot

Bot

There are # hotels ...

Response

semantics

I found # hotels ...

...

I found # hotels<s>

Bot

Bot

I found # hotels ...

Ground Truth Template

Context Style

Prototypes

Response

Style

Context

Style

Response Style

Prototypes

Only during

training

3 2 1

4

Semantic attentionStyle attention

Decoder

• Bi-LSTM encoder with global attention

• Prototype layer
• Predict weighted sum of prototype styles

• Sample style during inference
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needHi , I ... Sure , may I ... I would like to ...

User UserBot

Bot

There are # hotels ...

Response

semantics

I found # hotels ...

...

I found # hotels<s>

Bot

Bot

I found # hotels ...

Ground Truth Template

Context Style

Prototypes

Response

Style

Context

Style

Response Style

Prototypes

Only during

training

3 2 1

4

Semantic attentionStyle attention

Decoder

• Hierarchical RNN

• Prototype layer for noise reduction
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Style Vectors and
Response Semantics

I found<s>

<NUM> <AREA> <ADDR> <NUM>

Slots

Generated sequence

pgen

Generated word
distribution

Binary classifier

• Autoregressive language model

• Pointer network architecture
for integrating slots
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(RQ1) Can P2-Net generate more diverse responses than post-processing methods?

(RQ2) Can P2-Net paraphrase the template without changing its semantic?
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Table 3: Qualitative analysis with case studies.

G
oo

d
ca
se

Dialogue action: O�er two choices for booking a table at a restaurant.

Template: I could try the <name=“charlie chan”> , or <name=“the golden house”> for you, if you wish .
Context: Can you book a table for seven people on Thursday at 15:00 ?
Slots: <name=“La Mimosa”>, <name=“Shiraz”>

Diverse generations from P2-Net Diverse generations from stochastic beam search

(1) Would you like to try La Mimosa or Shiraz? (1) You can choose from La Mimosa , Shiraz .
(2) The La Mimosa and Shiraz are both available (2) You can choose from La Mimosa or Shiraz.
(3) What about La Mimosa or Shiraz? (3) you can choose from La Mimosa, or Shiraz.
(4) I can recommend the La Mimosa or Shiraz. (4) Sure, we have the La Mimosa or Shiraz.
(5) Okay . Would you like to try La Mimosa or Shiraz? (5) You can choose from La Mimosa, or Shiraz.
(6) How about the La Mimosa or Shiraz? (6) Sure, we have the La Mimosa and the Shiraz.
(7) I have the La Mimosa, Shiraz. (7) Sure, we have the La Mimosa and the Shiraz. Do you want

to book a of them?
(8) Okay, I have two options for you. La Mimosa and Shiraz. (8) Sure, we have La Mimosa and Shiraz. Do you want to go?

Ba
d
ca
se

Dialogue action: Inform about trains leaving in a certain time frame

Template: Certainly, we have <choice=“many”> trains, the �rst train to arrive after <arrive=“17:36”> and the latest at
<arrive=“18:45”>.
Context: Yes, are there any trains leaving town after 13:45 on Friday?
Slots: <choice=“several”>, <arrive=“16:07”>, <arrive=“24:07”>

Diverse generations from P2-Net Diverse generations from stochastic beam search

(1) I have several trains. One arrives at 16:07 and the other at
24:07.

(1) There are several trains that �t your criteria. One arrives at
16:07 and the other at 24:07.

(2) There are several trains, arriving by 16:07 or arriving at 24:07. (2) There are several trains that �t your criteria. One arrives at
16:07 and the latest at 24:07.

(3) There are several trains that would get you there at 16:07, or
would you like to take one at 24:07?

(3) There are several trains that �t your criteria. One will get you
there by 16:07 and 24:07.

(4) I have several trains that arrive by 16:07 and 24:07. (4) There are several trains that �t your criteria. One will get you
there by 16:07 and the other arrives at 24:07.

semantics, e.g., in response (1) of P2-Net, there are “several” trains
in the �rst sentence, however, it generates “One . . . and the other
. . . ” in the second sentence. This happens for all 4 responses from
the stochastic beam search. More e�orts are needed in making
the semantics consistent to slot values when generating responses.
(2) The models do not take the template as much into account as
expected. Speci�cally, in the template, it mentions there are “many”
trains and then it give the �rst and latest train. However, the slot
values “<arrive=“16:07”>” and “<arrive=“24:07”>” are independent
from sentence structures which hence has little in�uence in the sen-
tence structure during generating responses. And when generating
the responses, both models regard the two slot values as the only
options, which clearly ignores some semantics in the template.

In addition, in both good and bad examples, we see that stochastic
beam search puts the slots almost always at the same position.
The start is often the same because the beams are biased towards
selecting slots early. During generation, the non-slot words from
beam search often have a probability of less than 10% due to the
large vocabulary. In contrast, slots tend to have a probability close
to 100% because of the small set of slots, and the binary classi�er
p�en is close to 1 or 0. Thus, beams with having slots early in the
output have a signi�cantly higher probability, and dominate the

generation process. In contrast, sampling GT prototypes in P2-Net
does not su�er from this issue as we are not comparing di�erent
outputs on probabilities, but just sampling input styles.

6 CONCLUSION AND FUTUREWORK
In this work, we propose to combine the merits of template-based
DRG and corpus-based DRG in TDS by presenting P2-Net based
on prototype guided paraphrasing. P2-Net can learn to extract
style information from prototypes and extract semantics from tem-
plate responses. By combining both during generating, P2-Net can
generate more diverse responses while preserving the semantics
of template responses. Automatic and human evaluations as well
as qualitative analysis demonstrate the e�ectiveness of P2-Net in
terms of generating more diverse and human-like responses.

A limitation of P2-Net is that, in some cases, P2-Net will generate
inconsistent content in the response and neglect some semantics
in the templates. As for future work, on the one hand, we hope to
incorporate mechanisms to address above issues [36]. On the other
hand, we want to study how to apply P2-Net to other domains and
languages with minimum e�orts in creating new datasets using
transfer learning [40] or meta learning techniques [20, 30].
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Context: Can you book a table for seven people on Thursday at 15:00 ?
Slots: <name=“La Mimosa”>, <name=“Shiraz”>

Diverse generations from P2-Net Diverse generations from stochastic beam search

(1) Would you like to try La Mimosa or Shiraz? (1) You can choose from La Mimosa , Shiraz .
(2) The La Mimosa and Shiraz are both available (2) You can choose from La Mimosa or Shiraz.
(3) What about La Mimosa or Shiraz? (3) you can choose from La Mimosa, or Shiraz.
(4) I can recommend the La Mimosa or Shiraz. (4) Sure, we have the La Mimosa or Shiraz.
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semantics, e.g., in response (1) of P2-Net, there are “several” trains
in the �rst sentence, however, it generates “One . . . and the other
. . . ” in the second sentence. This happens for all 4 responses from
the stochastic beam search. More e�orts are needed in making
the semantics consistent to slot values when generating responses.
(2) The models do not take the template as much into account as
expected. Speci�cally, in the template, it mentions there are “many”
trains and then it give the �rst and latest train. However, the slot
values “<arrive=“16:07”>” and “<arrive=“24:07”>” are independent
from sentence structures which hence has little in�uence in the sen-
tence structure during generating responses. And when generating
the responses, both models regard the two slot values as the only
options, which clearly ignores some semantics in the template.

In addition, in both good and bad examples, we see that stochastic
beam search puts the slots almost always at the same position.
The start is often the same because the beams are biased towards
selecting slots early. During generation, the non-slot words from
beam search often have a probability of less than 10% due to the
large vocabulary. In contrast, slots tend to have a probability close
to 100% because of the small set of slots, and the binary classi�er
p�en is close to 1 or 0. Thus, beams with having slots early in the
output have a signi�cantly higher probability, and dominate the

generation process. In contrast, sampling GT prototypes in P2-Net
does not su�er from this issue as we are not comparing di�erent
outputs on probabilities, but just sampling input styles.

6 CONCLUSION AND FUTUREWORK
In this work, we propose to combine the merits of template-based
DRG and corpus-based DRG in TDS by presenting P2-Net based
on prototype guided paraphrasing. P2-Net can learn to extract
style information from prototypes and extract semantics from tem-
plate responses. By combining both during generating, P2-Net can
generate more diverse responses while preserving the semantics
of template responses. Automatic and human evaluations as well
as qualitative analysis demonstrate the e�ectiveness of P2-Net in
terms of generating more diverse and human-like responses.

A limitation of P2-Net is that, in some cases, P2-Net will generate
inconsistent content in the response and neglect some semantics
in the templates. As for future work, on the one hand, we hope to
incorporate mechanisms to address above issues [36]. On the other
hand, we want to study how to apply P2-Net to other domains and
languages with minimum e�orts in creating new datasets using
transfer learning [40] or meta learning techniques [20, 30].
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semantics, e.g., in response (1) of P2-Net, there are “several” trains
in the �rst sentence, however, it generates “One . . . and the other
. . . ” in the second sentence. This happens for all 4 responses from
the stochastic beam search. More e�orts are needed in making
the semantics consistent to slot values when generating responses.
(2) The models do not take the template as much into account as
expected. Speci�cally, in the template, it mentions there are “many”
trains and then it give the �rst and latest train. However, the slot
values “<arrive=“16:07”>” and “<arrive=“24:07”>” are independent
from sentence structures which hence has little in�uence in the sen-
tence structure during generating responses. And when generating
the responses, both models regard the two slot values as the only
options, which clearly ignores some semantics in the template.

In addition, in both good and bad examples, we see that stochastic
beam search puts the slots almost always at the same position.
The start is often the same because the beams are biased towards
selecting slots early. During generation, the non-slot words from
beam search often have a probability of less than 10% due to the
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p�en is close to 1 or 0. Thus, beams with having slots early in the
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generation process. In contrast, sampling GT prototypes in P2-Net
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outputs on probabilities, but just sampling input styles.

6 CONCLUSION AND FUTUREWORK
In this work, we propose to combine the merits of template-based
DRG and corpus-based DRG in TDS by presenting P2-Net based
on prototype guided paraphrasing. P2-Net can learn to extract
style information from prototypes and extract semantics from tem-
plate responses. By combining both during generating, P2-Net can
generate more diverse responses while preserving the semantics
of template responses. Automatic and human evaluations as well
as qualitative analysis demonstrate the e�ectiveness of P2-Net in
terms of generating more diverse and human-like responses.

A limitation of P2-Net is that, in some cases, P2-Net will generate
inconsistent content in the response and neglect some semantics
in the templates. As for future work, on the one hand, we hope to
incorporate mechanisms to address above issues [36]. On the other
hand, we want to study how to apply P2-Net to other domains and
languages with minimum e�orts in creating new datasets using
transfer learning [40] or meta learning techniques [20, 30].
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• Combine template- and corpus-based dialogue systems for diverse, natural conversations

• Unsupervised learning of decomposing a response into three independent parts: 
semantics, context style and paraphrasing noise

• Sampling a response style shows a significantly higher diversity than post-processing 
methods

• Simplifying the task for the corpus-based model supports accurate language generation
⟹ Less grammar mistakes


