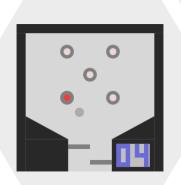


Learning Causal Variables from Temporal Sequences with Interventions

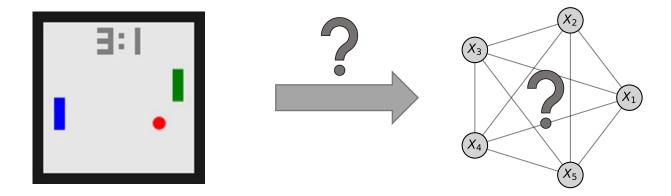
Phillip Lippe

05. August 2022



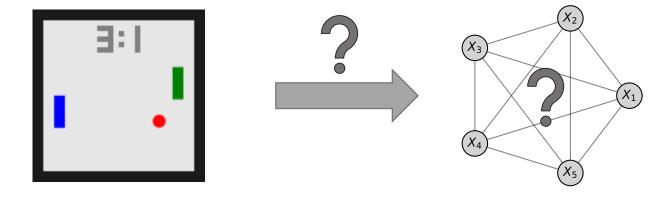
Causal Representation Learning

- Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?
- Crucial for reasoning, planning, generalization

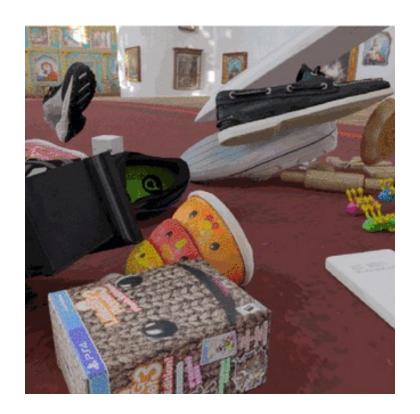


Causal Representation Learning Why Temporal?

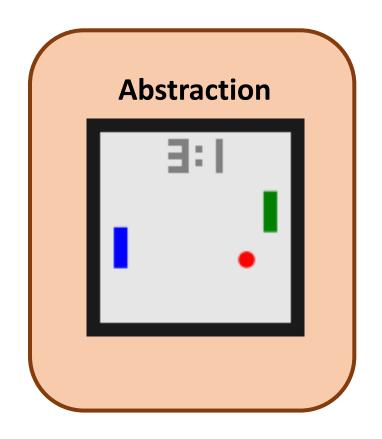
- Temporality gives strong bias
- Interact with an environment ⇒ see and reason about effect of intervention

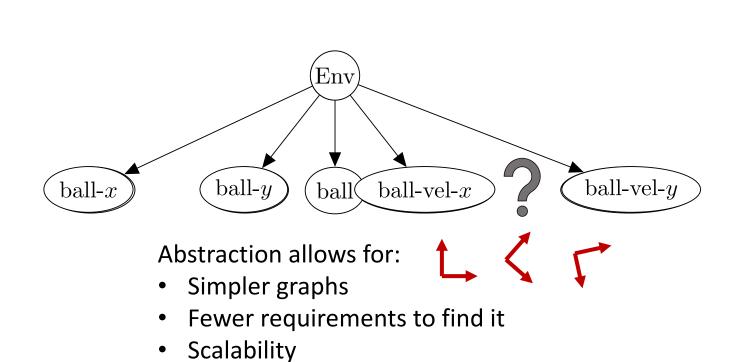


What is a Causal Variable?



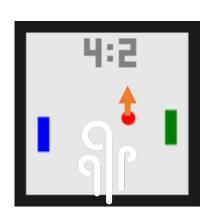
What is a Causal Variable? Challenges

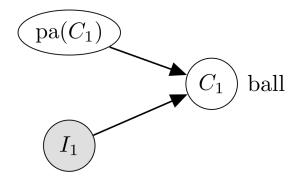




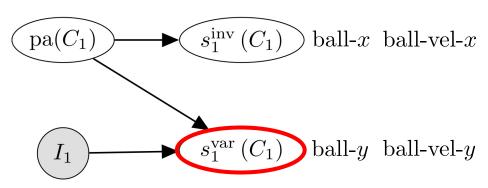
What is a Causal Variable? Minimal Causal Variables

- Abstraction ⇒ Multidimensional causal variables
- Identifying abstraction level ⇒ Interventions
- Augment causal graph with intervention targets
 - $I_1 = 1 \Rightarrow$ Intervention on C_1
 - $I_1 = 0 \Rightarrow$ Passively observing C_1
- Minimal causal variable $s_1^{\text{var}}(C_1)$: intervention-dependent part of a multidimensional causal variable





(a) Original causal graph of C_1



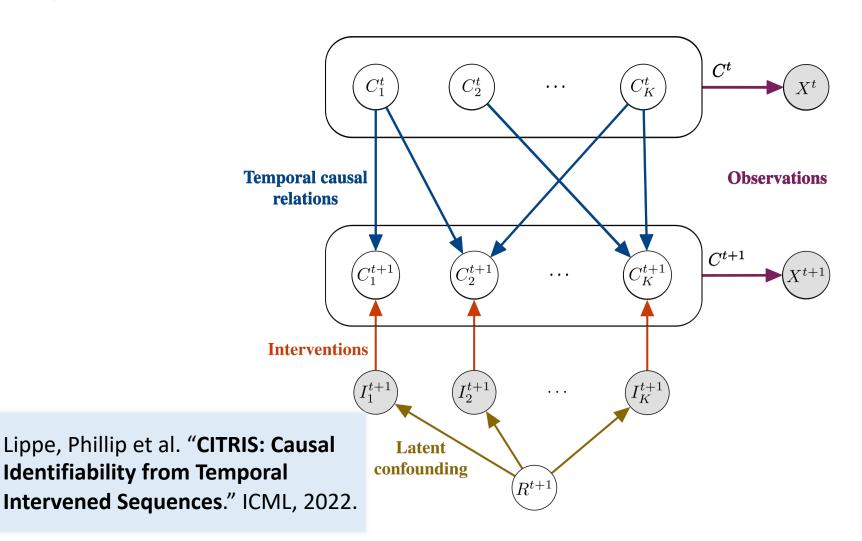
(b) Minimal causal split graph of C_1

Summary

- Abstraction simplifies graphs and identifiability
- Multidimensional causal variables needed for modeling different levels of abstractions
- Minimal causal variables: define causal variables by the interventions we have

How can we identify minimal causal variables?

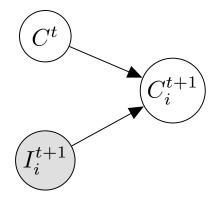
Causal Identifiability from Temporal Intervened Sequences Setup



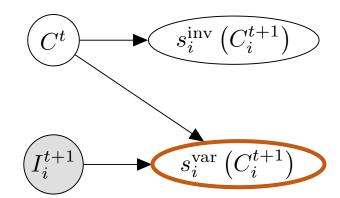
Causal Identifiability from Temporal Intervened Sequences Theoretical Results

- Main theoretical result: we can identify the *minimal causal variables* up to invertible, component-wise transformations if:
 - No intervention target I_i^{t+1} is a deterministic function of any other:

$$C_i^{t+1} \not\perp \!\!\! \perp I_i^{t+1} | C^t, I_i^{t+1} |$$



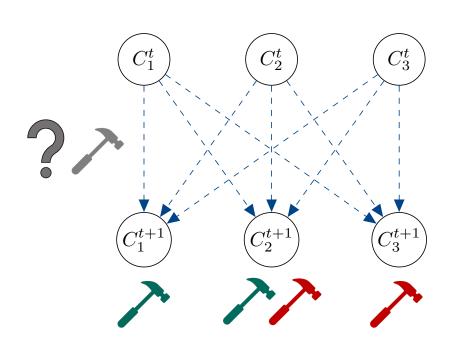
(a) Original causal graph of C_i

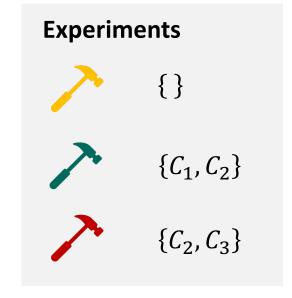


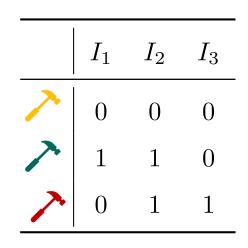
(b) Minimal causal split graph of C_i

Causal Identifiability from Temporal Intervened Sequences Intervention Experiments

- How many (soft) interventions are needed? $C_i^{t+1} \not\perp\!\!\!\perp I_i^{t+1} | C^t, I_j^{t+1} |$
- Every variable needs to be unique in the sets of experiments it is in







Causal Identifiability from Temporal Intervened Sequences Intervention Experiments

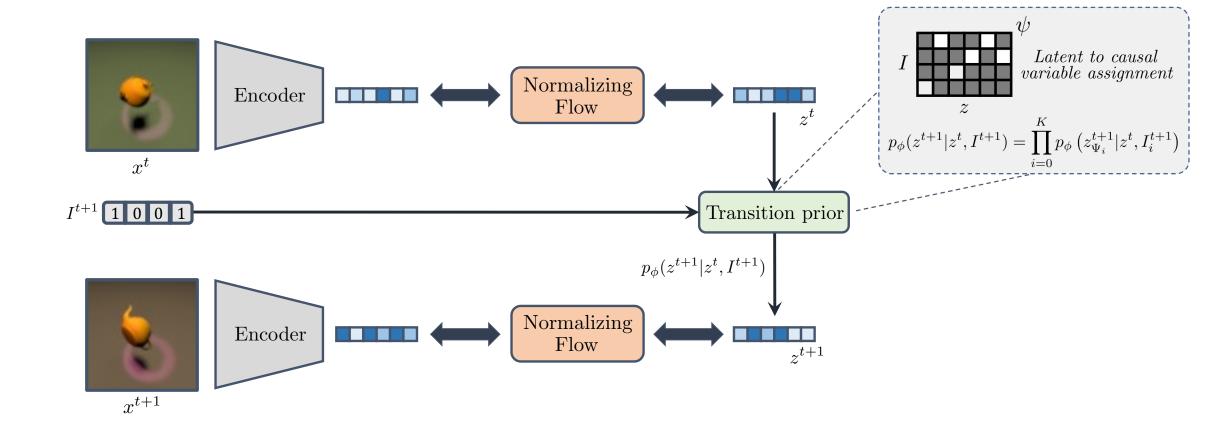
- How many (soft) interventions are needed? $C_i^{t+1} \not\perp\!\!\!\perp I_i^{t+1} | C^t, I_j^{t+1} |$
- Every variable needs to be unique in the sets of experiments it is in
- Turns out:

 $\lfloor \log_2 K \rfloor + 2$ experiments identify the minimal causal variables

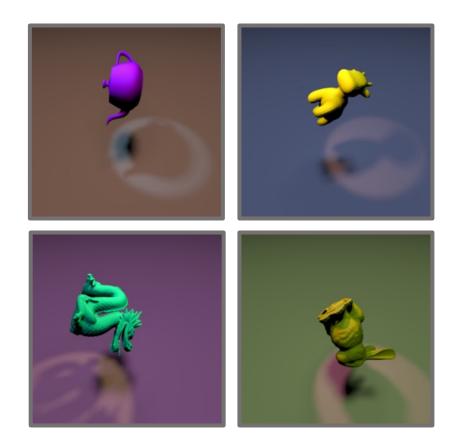
• Just one more than Intervention Design bound for causal discovery: $\lfloor \log_2 K \rfloor + 1$

Lippe, Phillip et al. "Intervention Design for Causal Representation Learning." CRL@UAI 2022.

CITRIS Architecture CITRIS-NF



CITRIS Experiments Temporal Causal3DIdent



Causal Factors

object-shape

object-position

object-hue

object-rotation

spotlight-hue

spotlight-rot

background-hue

categorical

continuous

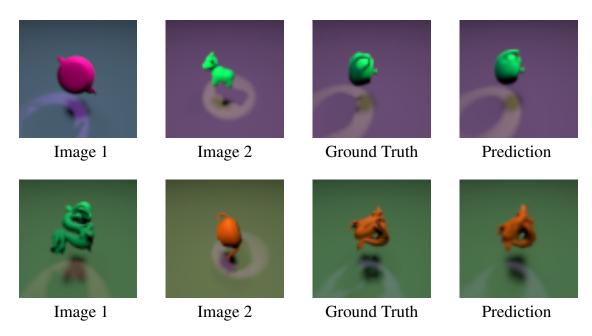
angle / circular

Zimmermann, Roland S., et al. "Contrastive learning inverts the data generating process." *ICML*, 2021.

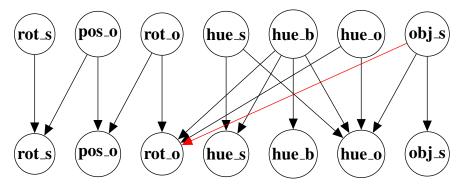
Von Kügelgen, Julius, et al. "Self-supervised learning with data augmentations provably isolates content from style." *NeurIPS*, 2021.

CITRIS Experiments Temporal Causal3DIdent

Novel combinations of causal factors



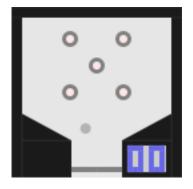
Learned Causal Graph

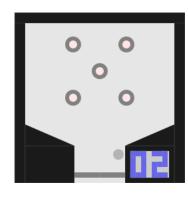


Instantaneous Effects in Temporal Sequences

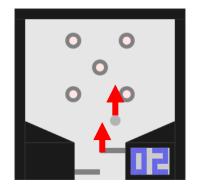
- Common assumption: time resolves causal effects
- But what about observations at low frame rates?

⇒ Instantaneous Effects!





time step *t*



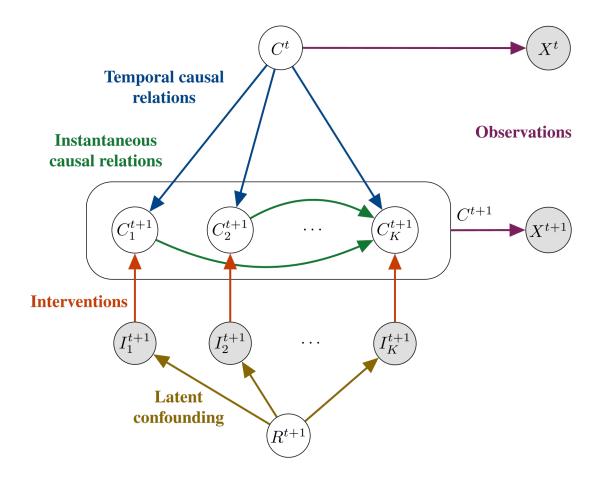
time step t + 1

Instantaneous Effects in Temporal Sequences Challenges

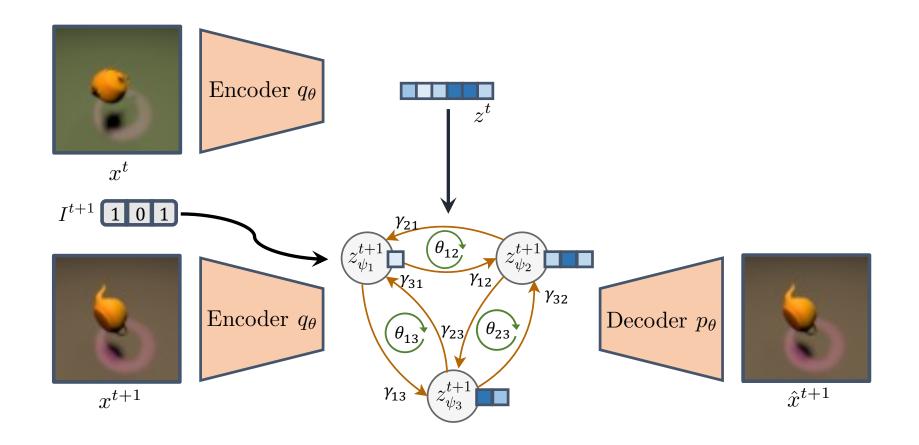
• Many more pitfalls, e.g.:

$$p_1(C_1)p_2(C_2)$$
 vs $p_1(C_1)\hat{p}_2(C_2 + C_1|C_1)$

- Solution: *perfect* interventions!
 - ⇒ Minimal causal variables become identifiable
- Chicken-and-egg situation:
 - Without graph, no causal variables
 - Without causal variables, no graph

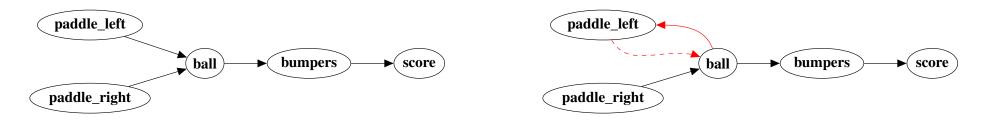


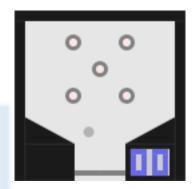
iCITRIS: CRL for Instantaneous Temporal Effects Architecture



iCITRIS: CRL for Instantaneous Temporal Effects Experiments

Learned Causal Graphs



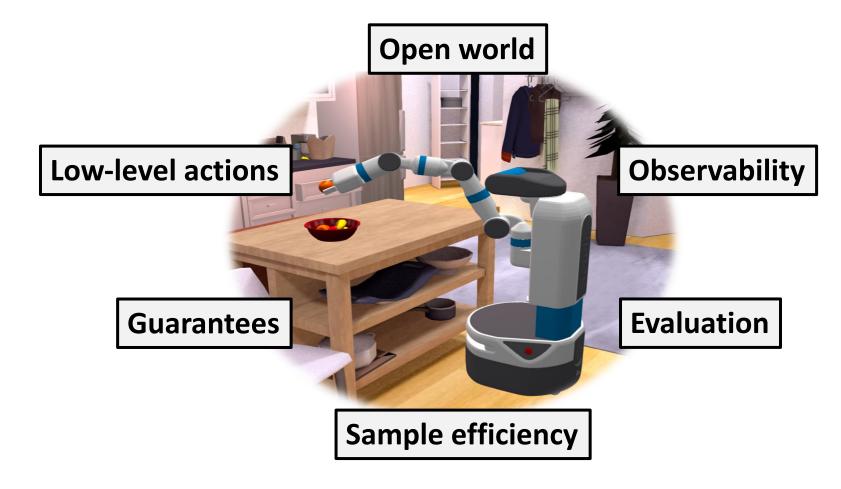


Lippe, Phillip et al. "iCITRIS: Causal Representation Learning for Instantaneous Temporal Effects." CRL@UAI 2022.

Summary

- CITRIS: Identify multidimensional causal variables from temporal sequences with soft interventions
- Identifies minimal causal variables, i.e., part of the variables that depends on interventions
- CITRIS-NF scales to visually complex scenes with pretrained autoencoder
- Intervention Design: $\lfloor \log_2 K \rfloor + 2$ experiments identify the minimal causal variables, just one more than in causal discovery
- iCITRIS: Extension to instantaneous effects within a time step
- Need for perfect interventions
- End-to-end learning with joint causal discovery and causal representation learning

Challenges in CRL



Collaborators

Sara Magliacane

Sindy Löwe

Yuki Asano

Taco Cohen

Efstratios Gavves

Johann Brehmer

Pim de Haan

Thank You!

- [1] Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. "CITRIS: Causal Identifiability from Temporal Intervened Sequences." In International Conference on Machine Learning, pp. 13557-13603. PMLR, 2022.
- [2] Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves. "iCITRIS:

 Causal Representation Learning for Instantaneous Temporal Effects." First Workshop on Causal Representation Learning (CRL), UAI 2022.
- [3] Lippe, Phillip, Sara Magliacane, Sindy Löwe, Yuki M. Asano, Taco Cohen, and Efstratios Gavves.

 "Intervention Design for Causal Representation Learning." First Workshop on Causal Representation

 Learning (CRL), UAI 2022.
- [4] Brehmer, Johann, Pim de Haan, Phillip Lippe, Taco Cohen. "Weakly supervised causal representation learning." First Workshop on Causal Representation Learning (CRL), UAI 2022.