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Causal Representation Learning

* Given high-dimensional observations of a (dynamical) system, what is its latent causal structure?

* Crucial for reasoning, planning, generalization
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Causal Representation Learning
Why Temporal?

* Temporality gives strong bias

* |nteract with an environment = see and reason about effect of intervention
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| What is a Causal Variable?

Greff, Klaus, et al. "Kubric: A scalable dataset
generator." CVPR, 2022. Learning Causal Variables from Temporal Sequences with Interventions - Phillip Lippe Slide 4



What is a Causal Variable?

Challenges
Abstraction
Abstraction allows for: L < r
\ / e Simpler graphs
* Fewer requirements to find it

e Scalability
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What is a Causal Variable?
Minimal Causal Variables

* Abstraction = Multidimensional causal variables @
* |dentifying abstraction level = Interventions @ ball
* Augment causal graph with intervention targets

 [; =1 = Intervention on C; G

* [; = 0 = Passively observing C; (a) Original causal graph of C4

* Minimal causal variable sy (C;):

intervention-dependent part of a
multidimensional causal variable @ @ ball-z ball-vel-z
G 1 (C1) D bally ball-vel-y

(b) Minimal causal split graph of C;
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Summary

Abstraction simplifies graphs and identifiability

Multidimensional causal variables needed for modeling different levels of abstractions

Minimal causal variables: define causal variables by the interventions we have

* How can we identify minimal causal variables?



Causal Identifiability from Temporal Intervened Sequences

Setup
Ct
Temporal causal Observations
relations

Interventions

% Lippe, Phillip et al. “CITRIS: Causal Latent

Identifiability from Temporal confounding
Intervened Sequences.” ICML, 2022.
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Causal Identifiability from Temporal Intervened Sequences
Theoretical Results

* Main theoretical result: we can identify the minimal causal variables up to invertible,
component-wise transformations if:

* No intervention target Il-t+1 is a deterministic function of any other:

t+1 t+1 t rt+1
CHl Y e T

(a) Original causal graph of C; (b) Minimal causal split graph of C;
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Causal Identifiability from Temporal Intervened Sequences

Intervention Experiments

* How many (soft) interventions are needed? C!*!

t+1 t rt+1
W I ot T

* Every variable needs to be unique in the sets of experiments itis in
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Causal Identifiability from Temporal Intervened Sequences
Intervention Experiments

How many (soft) interventions are needed? C{*' L I;™|C*, I'*!

Every variable needs to be unique in the sets of experiments it is in

Turns out:
|llog, K| + 2 experiments identify the minimal causal variables

Just one more than Intervention Design bound for causal discovery: |log, K| + 1

N, Lippe, Phillip et al. “Intervention Design A Come to our
for Causal Representation Learning.” oster later!
CRL@UAI 2022. P '



CITRIS Architecture
CITRIS-NF
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CITRIS Experiments

Temporal Causal3Dldent

Causal Factors

object-shape object-position
object-hue object-rotation
spotlight-hue spotlight-rot

background-hue

categorical

continuous

Zimmermann, Roland S., et al. "Contrastive learning angle /circular
inverts the data generating process." ICML, 2021.

Von Kiigelgen, Julius, et al. "Self-supervised learning

with data augmentations provably isolates content
from style." NeurlPS, 2021. Learning Causal Variables from Temporal Sequences with Interventions - Phillip Lippe Slide 13



CITRIS Experiments

Temporal Causal3Dldent

Novel combinations of causal factors

Ground Truth Prediction

Learned Causal Graph

Image 1 Image 2 Ground Truth Prediction
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Instantaneous Effects in Temporal Sequences

« Common assumption: time resolves causal effects

e But what about observations at low frame rates?
time step t

= |Instantaneous Effects!

1=

o O

o
.

timestept+ 1
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Instantaneous Effects in Temporal Sequences

Challenges
* Many more pitfalls, e.g.: ! ’@
Temporal causal
A relations
p1(C1)p2(C2) vs p1(C1)P2(Co + C1]Cq) ,
Instantaneous Observations
causal relations
. . . N
Solution: perfect interventions! ¥ ) s
= Minimal causal variables become @ @
identifiable A

*
Interventions
* Chicken-and-egg situation: @ @ @

e Without graph, no causal variables

Latent
* Without causal variables, no graph confounding
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iICITRIS: CRL for Instantaneous Temporal Effects

Architecture
@
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ICITRIS: CRL for Instantaneous Temporal Effects

Experiments

Learned Causal Graphs
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N\, Lippe, Phillip et al. “iCITRIS: Causal = Come to our
Representation Learning for Instantaneous oster later!
Temporal Effects” CRL@UAI 2022. P ;
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Summary

* CITRIS: Identify multidimensional causal variables from temporal sequences with soft interventions
* |dentifies minimal causal variables, i.e., part of the variables that depends on interventions

* CITRIS-NF scales to visually complex scenes with pretrained autoencoder

* Intervention Design: |log, K| + 2 experiments identify the minimal causal variables, just one more
than in causal discovery

 iCITRIS: Extension to instantaneous effects within a time step
* Need for perfect interventions

* End-to-end learning with joint causal discovery and causal representation learning



Challenges in CRL

Low-level actions

Guarantees

Szot, Andrew, et al. "Habitat 2.0: Training home
assistants to rearrange their habitat." NeurIlPS

2021.

Open world
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Observability

| Evaluation

Sample efficiency
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Thank You!
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