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Causal Identifiability from Temporal Sequences with Interventions

4. Intervention targets are known on the causal factor
level, but we are learning the assignment of latent vari-
ables to the causal factors, so from that perspective we
are learning also the intervention targets

5. Interventions are independent given the prior state

6. There exists an invertible mapping f from latent space
Z to observational space X : f : Z ! X [TODO:
Check if that is strictly necessary. All we require
is that the information of all causal factors can
be uniquely identified in the observations.] [Sara:
maybe something similar to the block MDP as-
sumption here (Du et al., 2019)?]

[TODO: Introduce following notation:]

• M - number of latent variables

• K - number of causal factors

• Ci - causal factor i

• Adding I in the causal graph as additional variables
I1, ..., IK

3. Method
[Phillip: The method section has been written for the
IDF. I am editing it currently to adjust it for the paper
with more details etc.] To find the causal factors from high-
dimensional observations over time with interventions, we
propose OurApproach, a VAE-based causal representation
learning architecture. We first introduce the theoretical
motivation and identifiability results. Then, we discuss the
specific design of the architecture.

3.1. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It} where
xt, xt+1 represent the observations at time step t and t+ 1
respectively, and It 2 [0, 1]K is a binary vector where Iti de-
notes whether the causal variable Ci has been intervened on
or not during the transition from xt to xt+1. We aim to learn
an invertible mapping from observations to a latent space,
g✓ : X ! Z , where the latent space Z follows a certain
structure which identifies and disentangles the causal factors
C1, ..., CK . To do this, we model a probability distribution
in the latent space, p�(zt+1|zt, It) with zt, zt+1 2 RM ,
which enforces a disentanglement over latents by condi-
tioning each latent variable on maximum one of the targets.
Specifically, we pick the distribution over latents to have the
following structure:

p�(z
t+1|zt, It) =

KY

i=1

p�
�
zt+1
 i

|zt, Iti
�

(1)

where  i = {j 2 {1, ...,M}| (j) = i} represents the
set of latent variables assigned to the causal variable i.
 (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : {1, ...,M} ! {0, ...,K}, with  (j) = 0 indicating that
the latent variable zj does not belong to any of the causal
variables. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It) for all elements in
D.

Under this model setup and the discussed assumptions in
Section 2.1, we show the following:

Theorem 3.1. Suppose that �⇤, ✓⇤ and  ⇤ are the pa-
rameters that, under the constraint of maximizing the like-
lihood p�(g✓(xt+1)|g✓(xt), It), maximize the entropy of
p�(z

t+1
 0

|zt, It). Then, the model �⇤, ✓⇤, ⇤ learns a la-
tent structure where the latent variables z i represent the
intervention-dependent information of the causal variable
Ci, and all other information is stored in z 0 .

We outline the proof for this statement in Appendix B. In-
tuitively, this means that we can identify causal variables
for which interventions have been provided, and whose con-
ditional distribution strictly depends on it. Examples that
violate this setting include variables without any temporal
dependency, or imperfect interventions that leave certain
aspects of the causal variables unchanged. [TODO: Finish
intervention-dependency discussion][Phillip: I find this
a bit hard to write since we need to decide how much
details we want to include here. The formal definition
(moved to the appendix for now) of the intervention-
independence feels too much, but at the same time, it
is an important concept of our paper.]

[TODO: Argue why intervention independent parts are
not the most relevant anyways: (1) Being intervention
independent means that we can likely not influence it
anyways, at least not in direct ways. Hence, in RL set-
tings, there is likely little incentive to model this part
as a separate variable. (2) When having perfect inter-
ventions, this requires time-independent variables/sub-
dimensions, and can’t occur for temporal dependencies.]

The setup above has the benefit of not taking any assumption
on the distribution or restricting the causal graph, besides
having temporal dependencies. Further, in contrast to many
other works, a causal variable can be represented by multiple
latent variables in this setup. This allows the modeling of
different levels of causal variables. For instance, the position
of an object can be modeled by multiple latent variables,
e.g. the position in the three dimensions x, y, z, while the
higher-level causal variable consists of all of them together.
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{Ct
1, C

t
2, ..., C

t
K}T

t=1, for which at each time step t we
can only observe a high-dimensional observation Xt =
o(Ct

1, C
t
2, ..., C

t
K) that represents an entangled view of all

the causal factors. For example, in Pong the latent causal
factors can represent the position of the paddle or the ball,
while the observation is the image. The causal factors can be
continuous, discrete, or mixed. Moreover, in this work, we
consider causal factors to potentially be multidimensional
which offers support to modeling different levels of causal
variables (e.g. a 2D-position encoded in a single factor with
two dimensions instead of two different causal factors). Our
goal is to identify the causal factors (Ct

1, C
t
2, ..., C

t
K) from

the observations Xt under the following assumptions.

Causal structure assumptions: We assume that the un-
derlying latent causal process is an unobserved dynamic
Bayesian network (DBN (Dean & Kanazawa, 1989; Murphy,
2002)) over the random variables (C1, C2, ..., CK) with no
instantaneous effect and first-order Markov (i.e. the causal
parents of a factor at time t can only be in the previous
time step t � 1), for which the parameters are time-invariant
(i.e. the time series is stationary). As typical in DBNs, we
assume that the causal factors are causally sufficient (i.e.
there are no additional latent confounders).

Availability of intervention targets: Additionally, we as-
sume in each time step, some causal factors might have been
intervened upon and that we have access to the intervention
targets. We denote these intervention targets by the binary
vector It 2 {0, 1}K where It

i = 1 refers to an intervention
on the causal variable Ct

i . We also assume that interventions
targets It

1, ..., I
t
K are independent of each other given the

prior state: It
i ?? It

j |C
t�1
1 , ..., Ct�1

K .1

In this setup, we can model interventions with an arbitrary
number of targets, including the empty set (observational
data). Moreover, it can model both perfect interventions (in
which the target variable becomes independent of the causal
parents) and soft interventions (in which only the conditional
distribution P (Ci|pa(Ci)) of the target Ci given its parents
pa(Ci) changes).

Observation assumptions: We assume that each latent
causal factors can be uniquely identified from the observa-
tions, i.e. there exists a surjective map f : X ! C from the
observation space X ✓ RN to the causal factor space C.

3.2. Learning with Interventions over Time

We consider a dataset D of tuples {xt, xt+1, It+1} where
xt, xt+1 2 RN represent the observations at time step t and

1Note that when two variables Ci and Cj can only be inter-
vened upon together, or appear to be in the finite data, our identi-
fiability result will not be able to distinguish Ci and Cj . Instead,
we are able to identify Ci and Cj as a joint, coarse variable.

[

\

�

�

�

Figure 2. Example causal process of a ball with a two-dimensional
position x, y. The ball can only swap between the two boxes by
the use of an intervention, which does not influence the dynamics
of the position within a box.

t+1 respectively, and It+1 describes the intervention targets
at time step t + 1. We aim to learn an invertible mapping
from observations to a latent space, g✓ : X ! Z , disentan-
gling the different causal factors. Thereby, we choose the
latent space to be larger than the number of causal factors,
i.e. Z ✓ RM , M � K, such that a single causal factor
can be modeled in multiple latent dimensions. This allows
the encoding of multidimensional factors, but also benefits
the optimization process, since some variables like circular
angles or categorical factors with many categories can have
simpler distributions when modeled in more dimensions. To
implement this setup, we model a probability distribution
in the latent space, p�(zt+1|zt, It+1) with zt, zt+1 2 RM

being the latent variables for xt and xt+1 respectively. This
distribution enforces a disentanglement over latents by con-
ditioning each latent variable on maximum one of the tar-
gets:

p�(zt+1|zt, It+1) =
KY

i=0

p�

�
zt+1
 i

|zt, It+1
i

�
(1)

where  i = {j 2 J1..MK| (j) = i} represents the set of
latent variables assigned to the causal variable i and It+1

0 =
;.  (i) is thereby a learnable assignment function which
maps each latent variable to one of the intervention targets,
 : J1..MK ! J0..KK, with  (j) = 0 indicating that the
latent variable zj does not belong to any intervened causal
variable. Then, the objective of the model is to maximize
the likelihood p�(g✓(xt+1)|g✓(xt), It+1) for all elements
in D.

Before discussing the identifiability results for the interven-
tional case, we first state that:
Proposition 3.1. In general, under the assumptions and
setup of Section 3.1, causal factors without a unique set of
interventions, cannot be uniquely identified.

Take as an example the setup in Figure 2, where a ball can
move in two dimensions, x and y. If both x and y follow
a Gaussian distribution over time, then any two orthogonal
axes can describe the distribution equally well (Hyvärinen
et al., 2001; 2019), making it impossible to uniquely identify

PROBLEM SETTING
• Causal effects faster than frame rate cause instantaneous effects
• Joint causal representation learning + causal discovery needed

We identify causal variables and their
causal graph from temporal sequences 
with instantaneous effects.

OPTIMIZATION STABILIZATION
• Chicken-and-egg situation: without graph, no

disentanglement; without variables, no graph
• Our solution:
• Graph Learning Scheduling: freeze graph

parameters for first several iterations
• Mutual Information Estimator: no MI between

intervened variables and previous time step
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iCITRIS: INSTANTANEOUS EFFECT IN CRL
• Perfect interventions to

distinguish instantaneous
effects from entanglement
in encoding function

• Theoretical result: the minimal causal variables [1] are
identifiable under a directed acyclic causal graph

• Extend CITRIS [1] with common causal discovery methods
(ENCO [2] or NOTEARS [3])

EXPERIMENTS
• Instantaneous Temporal Causal3DIdent: 7 causal

variables with temp. and instantaneous effects

• Causal Pinball: game dynamics with 5 causal vars

object color is not the one we expected, then we can deduce
how the entanglement happens in the observation function.

Further, we consider the general setting in which causal
factors can be multidimensional. Following Lippe et al.
(2022b), we focus on the minimal causal variables, i.e. the
parts of the causal factors that are affected by the interven-
tions, since interventions may leave some dimensions un-
changed. In this setting, we prove that we can identify the
minimal causal variables and their graph, if we have se-
quences with perfect interventions on known targets.

As a practical implementation, we propose instantaneous

CITRIS, or iCITRIS, which, inspired by the recent causal
representation learning method CITRIS (Lippe et al.,
2022b), can discover the minimal causal variables and their
causal graph for both instantaneous and temporal effects.
iCITRIS maps high-dimensional observations like images
to a latent space, on which it learns an instantaneous causal
graph by integrating a causal discovery method into its prior.
In particular, we consider two recent differentiable causal
discovery methods: NOTEARS (Zheng et al., 2018) and
ENCO (Lippe et al., 2022a). In experiments on two video
datasets, we show that iCITRIS can disentangle the causal
variables while accurately recovering their causal graph.

Related work Most works in the field of causal representa-
tion learning have focused so far on identifying independent
factors of variations from data (Klindt et al., 2021; Kumar
et al., 2018; Locatello et al., 2019, 2020b; Träuble et al.,
2021), including recent works in Independent Component
Analysis (ICA) (Gresele et al., 2021; Hyvärinen et al., 2001,
2019; Monti et al., 2019). In particular, Lachapelle et al.
(2022); Yao et al. (2022) discuss identifiability of causal vari-
ables from temporal sequences, but require all causal vari-
ables to be conditionally independent and scalar. Focusing
on causal structures in the data, von Kügelgen et al. (2021)
demonstrate that contrastive learning methods can block-
identify causal variables invariant to augmentations. CITRIS
(Lippe et al., 2022b) uses temporal sequences with interven-
tions to identify the minimal causal variables, i.e. the part of
a potentially multidimensional causal variable that is influ-
enced by the provided interventions. Still, similar to works
on ICA, CITRIS requires the causal variables within a time
step to be independent conditioned on the previous time
step, which is violated by instantaneous effects. Locatello
et al. (2020a) identify independent latent causal factors from
pairs of observations that only differ in a subset of causal
factors. Brehmer et al. (2022) have recently extended this
setup to variables with instantaneous causal effects. How-
ever, in contrast to our approach, Brehmer et al. (2022) re-
quire counterfactual observations where for a pair of obser-
vations, the noise term for all variables is identical, except
for a single intervened variable. To the best of our knowl-
edge, iCITRIS is the first method to identify causal variables
and their causal graph from temporal, intervened sequences
in the case of potentially instantaneous causal effects.
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Figure 1: An example causal graph in iTRIS. A latent causal
factor Ct+1

i can have as potential parents the causal fac-
tors at the previous time step C

t = (Ct
1, . . . , C

t
K), instanta-

neous parents Ct+1
j , i 6= j, and its intervention target It+1

i .
All causal variables Ct+1 and the noise E

t+1 cause the ob-
servation X

t+1. Rt+1 is a potential latent confounder be-
tween the intervention targets.

2 IDENTIFIABILITY IN TEMPORAL
INTERVENED SEQUENCES WITH
INSTANTANEOUS EFFECTS

We first describe our setting, Instantaneous TempoRal Inter-
vened Sequences (iTRIS). We then discuss the challenges
that arise due to instantaneous effects, and their implica-
tions on the identifiability of the causal factors. Finally, we
present the identifiability results in iTRIS.

2.1 INSTANTANEOUS TEMPORAL INTERVENED
SEQUENCES (ITRIS)

iTRIS considers a latent temporal causal process with K

causal factors (Ct
1, C

t
2, ..., C

t
K)Tt=1 with both causal rela-

tions across time steps, i.e. temporal, and within a time
step, i.e. instantaneous. At each time step t, we measure a
high-dimensional observation X

t from this process, repre-
senting a noisy, entangled view of all causal factors Ct =
(Ct

1, C
t
2, ..., C

t
K). The following paragraphs describe this

setup in more detail, which is visualized in Figure 1.

Causal factors: We consider causal factors to be potentially
multidimensional, i.e., Ci 2 DMi

i with Mi � 1 being the
unobserved dimensionality of Ci and Di the domain, for
example R for continuous variables. We define the causal
factor space as C = DM1

1 ⇥ ...⇥DMK
K .

Causal structure assumptions: We assume that the under-
lying latent causal process is a dynamic Bayesian network
(DBN) (Dean and Kanazawa, 1989; Murphy, 2002) over the
multidimensional random variables (C1, C2, ..., CK) that is
first-order Markov, stationary, and potentially has instanta-

Intv.

Table 1: Results on Instantaneous Temporal Causal3DIdent
over three seeds. iCITRIS-ENCO performs best in identify-
ing the variables and their graph.

Model R2 (diag " / sep #) SHD (instant # / temp #)

iCITRIS-ENCO 0.96 / 0.05 1.33 / 5.00
iCITRIS-NOTEARS 0.95 / 0.09 4.00 / 5.00
CITRIS 0.92 / 0.19 4.67 / 10.00
iVAE 0.82 / 0.20 6.67 / 15.33
iVAE-AR 0.79 / 0.29 11.00 / 12.67

which we denote with iVAE-AR. To ensure comparability,
we share the general model setup where possible (e.g. en-
coder/decoder network) across all methods.

Evaluation metrics We follow Lippe et al. (2022b) in re-
porting the R

2 correlation scores between the true causal
factors and the latent variables that have been assigned to a
specific causal variable by the learned model. We denote the
average correlation of the predicted causal factor to its true
value with R

2-diag (optimal 1), and the maximum correla-
tion besides its true factor with R

2-sep (optimal 0). Further-
more, to investigate the modeling of the temporal and instan-
taneous relations between the causal factors, we perform
causal discovery as a post-processing step on the latent rep-
resentations of all models, and report the structural hamming
distance (SHD) between the predicted and true causal graph.

4.2 3D OBJECT RENDERINGS: CAUSAL3DIDENT

We use the Temporal Causal3DIdent dataset (von Kügel-
gen et al., 2021; Lippe et al., 2022b) which contains 3D
renderings (64 ⇥ 64 pixels) of different object shapes un-
der varying positions, rotations, and lights. To introduce in-
stantaneous effects into the dataset, we replace all tempo-
ral relations with instantaneous edges, except those on the
same variable (Ct

i ! C
t+1
i ). For instance, a change in the

rotation leads to an instantaneous change in the position of
the object, which again influences the spotlight. Overall, we
obtain an instantaneous graph of eight edges between the
seven multidimensional causal variables. Since the dataset
is visually complex, we use the normalizing flow variant of
iCITRIS and CITRIS applied on a pretrained autoencoder.

Table 1 shows that iCITRIS-ENCO disentangles the causal
variables well and recovers most instantaneous relations in
this challenging setup, with one error on average. The tem-
poral graph had more false positive edges due to minor, addi-
tional correlations. On the other hand, iCITRIS-NOTEARS
struggles with the graph learning and incorrectly oriented
edges during training, underlining the benefit of ENCO as
the graph learning method in iCITRIS. The baselines have
a significantly higher entanglement of the causal variables
and struggle with finding the true causal graph. In summary,
iCITRIS-ENCO can identify the causal variables and their
instantaneous graph in this visually challenging dataset well.

Table 2: Results on the Causal Pinball dataset (three seeds).

Model R2 (diag " / sep #) SHD (instant # / temp #)

iCITRIS-ENCO 0.98 / 0.04 0.67 / 3.67
iCITRIS-NOTEARS 0.98 / 0.06 2.33 / 3.67
CITRIS 0.98 / 0.04 2.67 / 4.00
iVAE 0.55 / 0.04 2.33 / 4.33
iVAE-AR 0.53 / 0.15 4.33 / 6.33

4.3 REAL GAME DYNAMICS: CAUSAL PINBALL

Finally, we consider a simplified version of the game Pinball,
which naturally comes with instantaneous causal effects: if
the user activates the paddles when the ball is close, the ball
is accelerated immediately. Similarly, when the ball hits a
bumper, its light turns on and the score increases directly.
This results in instantaneous effects under common frame
rates. In this environment, we consider five causal variables:
the position of the left paddle, the right paddle, the ball
(position and velocity), the state of the bumpers, and the
score. Pinball is closer to a real-world environment than the
other two datasets and has two characteristic differences: (1)
many aspects of the environment are deterministic, e.g. the
ball movement, and (2) the instantaneous effects are sparse,
e.g. the paddles do not influence the ball if it is far away
of them. The first aspect violates assumptions of iCITRIS,
questioning whether iCITRIS yet empirically works here.

The results in Table 2 suggest that iCITRIS still works
well on this environment. Besides disentangling the causal
variables well, iCITRIS-ENCO identifies the instantaneous
causal graph with minor errors. Interestingly, CITRIS ob-
tains a good disentanglement score as well, which is due
to the instantaneous effects being often sparse. Yet, there
is still a gap between iCITRIS-ENCO and CITRIS in the
instantaneous SHD, showing the benefit of learning the in-
stantaneous graph jointly with the causal variables.

5 CONCLUSION

We propose iCITRIS, a causal representation learning frame-
work for temporal intervened sequences with instantaneous
effects. iCITRIS identifies the minimal causal variables
while jointly learning the causal graph, including the instan-
taneous relations. In experiments, iCITRIS accurately recov-
ers the causal factors and their graph in two video datasets.
While we envision a future application of methods similar
to iCITRIS in a reinforcement learning setting, the limiting
factor currently are the assumptions on the availability of
perfect interventions with known targets. Future work in-
cludes investigating a setup where a sequence of actions is
needed to perform targeted interventions. Finally, iCITRIS
is limited to acyclic graphs, while for instantaneous causal
effects cycles could occur under low frame rates, which is
also an interesting future direction.
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effects. iCITRIS identifies the minimal causal variables
while jointly learning the causal graph, including the instan-
taneous relations. In experiments, iCITRIS accurately recov-
ers the causal factors and their graph in two video datasets.
While we envision a future application of methods similar
to iCITRIS in a reinforcement learning setting, the limiting
factor currently are the assumptions on the availability of
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cludes investigating a setup where a sequence of actions is
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iCITRIS identifies the causal variables and their 
temp.+instant. graph well in both datasets 

• Perfect interventions to
distinguish instantaneous
effects from entanglement
in encoding function


